MHB Help find eqn of circle given another circle that is tangent

  • Thread starter Thread starter sktrinh
  • Start date Start date
  • Tags Tags
    Circle Tangent
AI Thread Summary
To find the equation of a circle that passes through the point (-3,1) and the intersection points of the circles defined by x^2 + y^2 + 5x = 1 and x^2 + y^2 + y = 7, start by determining the intersection points of the two circles. These points will lie on a line that is perpendicular to the line connecting the centers of the circles. Once the intersection points are identified, use them along with the point (-3,1) to find the circumcircle of the three points. This approach will yield the desired circle's equation. Understanding the geometric relationships between the circles is key to solving the problem effectively.
sktrinh
Messages
3
Reaction score
0
Please help me find the standard equation of the circle passing through the point (−3,1) and containing the points of intersection of the circles

x^2 + y^2 + 5x = 1

and

x^2 + y^2 + y = 7

I don't know how to begin, I am used to tangent lines or other points, but I don't know what is visually going on here. I can find the two centres C(h,k) of the given equations (-5/2,0) & (0,-1/2) both with r = sqrt(29/4), but what is the conceptual trick to equate that to the equation in question? Thanks for your help.
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: help find eqn of circle given another circle that is tangent

I would begin by finding the points of intersection of the two given circles. We know these points will lie on the line perpendicular to the line containing the centers and that is midway between the centers.
 
Re: help find eqn of circle given another circle that is tangent

Hi,
I agree with Mark for your specific circles. In general for two given circles and a point P not on the line of intersection of the circles, you want to find the equation of the circle passing through the intersection points and P. To do this first find the intersection points Q and R of the two circles. Then find the circumcircle of points P, Q and R. Here's an excellent web page that, among other things, gives algorithms for these two problems:
Circle, Cylinder, Sphere
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top