Help: If A[itex]\subseteq[/itex]B proof C-B[itex]\subseteq[/itex]C-A

  • Thread starter ozarga
  • Start date
  • Tags
    Proof
In summary, the problem is to prove that when A is a subset of B, then C-B is a subset of C-A. The solution involves using the definitions of set complement and contraposition, and ultimately results in showing that C-B is indeed a subset of C-A.
  • #1
ozarga
2
0

Homework Statement


Hello, I'm having problems with the following exercise from my homework.

Proof that when A[itex]\subseteq[/itex]B, then it happens that C-B[itex]\subseteq[/itex]C-A


Homework Equations





The Attempt at a Solution


This is how I have been trying to solve it:
1. A[itex]\subseteq[/itex]B // Hyp
2. x[itex]\in[/itex]A[itex]\rightarrow[/itex]x[itex]\in[/itex]B //Element wise proof [1]
3. x[itex]\in[/itex]A [itex]\wedge[/itex] x[itex]\in[/itex]B // which rule allow me to do this? [2]
4. ( x[itex]\in[/itex]A [itex]\wedge[/itex] x[itex]\in[/itex]B) [itex]\vee[/itex] x[itex]\in[/itex]C // Addition [3]
5. (x[itex]\in[/itex]A[itex]\vee[/itex]x[itex]\in[/itex]C)[itex]\wedge[/itex](x[itex]\in[/itex]B[itex]\vee[/itex]x[itex]\in[/itex]C) // Distrivutive law [4]
6. x[itex]\in[/itex]A[itex]\vee[/itex]x[itex]\in[/itex]C // [itex]\wedge[/itex] OUT [5]
7. x[itex]\in[/itex]B[itex]\vee[/itex]x[itex]\in[/itex]C // [itex]\wedge[/itex] OUT [5]
8. y[itex]\in[/itex]C // Hyp (This step is the very confusing one. I'm assuming it exists an element of one set I have no information it actually exists)
9. y[itex]\notin[/itex]B // Modus Ponendo Tollens [7,8]
10. y[itex]\in[/itex]C[itex]\wedge[/itex]y[itex]\notin[/itex]B // [itex]\wedge[/itex] IN [8,9]
11. y[itex]\notin[/itex]A // Modus Ponendo Tollens [6,8]
12. y[itex]\in[/itex]C[itex]\wedge[/itex]y[itex]\notin[/itex]A // [itex]\wedge[/itex] IN [8,11]
13. y[itex]\in[/itex]C[itex]\wedge[/itex]y[itex]\notin[/itex]B [itex]\rightarrow[/itex] y[itex]\in[/itex]C[itex]\wedge[/itex]y[itex]\notin[/itex]A // CP [10, 12]
14. C-B [itex]\subseteq[/itex] C-A // Defs of Difference [13] & Element wise proof

Sorry for my poor english. Thanks in advance for your help.
 
Physics news on Phys.org
  • #2
ozarga said:

Homework Statement


Hello, I'm having problems with the following exercise from my homework.

Proof that when A[itex]\subseteq[/itex]B, then it happens that C-B[itex]\subseteq[/itex]C-A

Homework Equations



The Attempt at a Solution


This is how I have been trying to solve it:
1. A[itex]\subseteq[/itex]B // Hyp
2. x[itex]\in[/itex]A[itex]\rightarrow[/itex]x[itex]\in[/itex]B //Element wise proof [1]
3. x[itex]\in[/itex]A [itex]\wedge[/itex] x[itex]\in[/itex]B // which rule allow me to do this? [2]
4. ( x[itex]\in[/itex]A [itex]\wedge[/itex] x[itex]\in[/itex]B) [itex]\vee[/itex] x[itex]\in[/itex]C // Addition [3]
5. (x[itex]\in[/itex]A[itex]\vee[/itex]x[itex]\in[/itex]C)[itex]\wedge[/itex](x[itex]\in[/itex]B[itex]\vee[/itex]x[itex]\in[/itex]C) // Distrivutive law [4]
6. x[itex]\in[/itex]A[itex]\vee[/itex]x[itex]\in[/itex]C // [itex]\wedge[/itex] OUT [5]
7. x[itex]\in[/itex]B[itex]\vee[/itex]x[itex]\in[/itex]C // [itex]\wedge[/itex] OUT [5]
8. y[itex]\in[/itex]C // Hyp (This step is the very confusing one. I'm assuming it exists an element of one set I have no information it actually exists)
9. y[itex]\notin[/itex]B // Modus Ponendo Tollens [7,8]
10. y[itex]\in[/itex]C[itex]\wedge[/itex]y[itex]\notin[/itex]B // [itex]\wedge[/itex] IN [8,9]
11. y[itex]\notin[/itex]A // Modus Ponendo Tollens [6,8]
12. y[itex]\in[/itex]C[itex]\wedge[/itex]y[itex]\notin[/itex]A // [itex]\wedge[/itex] IN [8,11]
13. y[itex]\in[/itex]C[itex]\wedge[/itex]y[itex]\notin[/itex]B [itex]\rightarrow[/itex] y[itex]\in[/itex]C[itex]\wedge[/itex]y[itex]\notin[/itex]A // CP [10, 12]
14. C-B [itex]\subseteq[/itex] C-A // Defs of Difference [13] & Element wise proof

Sorry for my poor english. Thanks in advance for your help.
Generally, to prove that [itex]C-B\subseteq C-A\,,[/itex] you take an element of set C-B and show that it is an element of set C-A .
 
  • #3
Thank you SammyS.

I think I figured out:

1. A[itex]\subseteq[/itex]B // hyp
2. x[itex]\in[/itex]A [itex]\rightarrow[/itex] x[itex]\in[/itex]B // for element proof
3. x[itex]\notin[/itex]B [itex]\rightarrow[/itex] x[itex]\notin[/itex]A // Contraposition
4. x[itex]\in[/itex]Bc[itex]\rightarrow[/itex]x[itex]\in[/itex]Ac // Definition of Set Complement in 3
5. x[itex]\in[/itex]C-B[itex]\rightarrow[/itex]x[itex]\in[/itex]C-A // Definition of Complement in 4
6. C-B[itex]\subseteq[/itex]C-A

Is it right?
 

FAQ: Help: If A[itex]\subseteq[/itex]B proof C-B[itex]\subseteq[/itex]C-A

What does "A[itex]\subseteq[/itex]B" mean in the statement "Help: If A[itex]\subseteq[/itex]B proof C-B[itex]\subseteq[/itex]C-A"?

In set theory, A[itex]\subseteq[/itex]B means that every element in set A is also an element of set B. In other words, A is a subset of B.

What does "C-B" represent in the statement "Help: If A[itex]\subseteq[/itex]B proof C-B[itex]\subseteq[/itex]C-A"?

C-B represents the set of elements that are in set C but not in set B. This is also known as the relative complement of B in C.

What is the meaning of "C-A" in the statement "Help: If A[itex]\subseteq[/itex]B proof C-B[itex]\subseteq[/itex]C-A"?

C-A represents the set of elements that are in set C but not in set A. This is also known as the relative complement of A in C.

What is the purpose of proving C-B[itex]\subseteq[/itex]C-A in this statement?

This statement is asking to prove that the set of elements that are in C but not in B is a subset of the set of elements that are in C but not in A. In other words, it is asking to show that the relative complement of B in C is contained within the relative complement of A in C.

What are some real-life examples that can help understand this statement better?

One example could be a Venn diagram where set A represents all the students in a school and set B represents all the students who play a sport. If we take the relative complement of B in A, it would represent the students who do not play a sport. On the other hand, if we take the relative complement of A in B, it would represent the students who play a sport but do not attend this particular school. Thus, proving C-B[itex]\subseteq[/itex]C-A would show that all the students who do not play a sport are also not attending the school.

Back
Top