Help in understanding the derivation of Einstein equations

user1139
Messages
71
Reaction score
8
Homework Statement
I am working through the derivation of the Einstein field equations by varying the Einstein-Hilbert action. I need some help in understanding certain steps
Relevant Equations
Given below
There are two parts to my question.

The first is concerns the variation of the Reimann tensor. I am trying to show

$$\delta R^{\rho}_{\phantom{\rho}\sigma\mu\nu}=\nabla_{\mu}\left(\delta\Gamma^{\rho}_{\phantom{\rho}\nu\sigma}\right)-\nabla_{\nu}\left(\delta\Gamma^{\rho}_{\phantom{\rho}\mu\sigma}\right)$$

In order to show the above, it is necessary that ##\Gamma^{\lambda}_{\phantom{\lambda}\nu\mu}\delta\Gamma^{\rho}_{\phantom{\rho}\lambda\sigma}-\Gamma^{\lambda}_{\phantom{\lambda}\mu\nu}\delta\Gamma^{\rho}_{\phantom{\rho}\lambda\sigma}=0##. Why is this true?

The second part concerns the term ##\int\nabla_{\rho}A^{\rho}\sqrt{-g}\,\mathrm{d}^4x=0## where ##A^{\rho}=g^{\sigma\nu}\delta\Gamma^{\rho}_{\phantom{\rho}\nu\sigma}-g^{\sigma\rho}\delta\Gamma^{\mu}_{\phantom{\mu}\mu\sigma}##. Why is the integral zero?
 
Physics news on Phys.org
Thomas1 said:
In order to show the above, it is necessary that ##\Gamma^{\lambda}_{\phantom{\lambda}\nu\mu}\delta\Gamma^{\rho}_{\phantom{\rho}\lambda\sigma}-\Gamma^{\lambda}_{\phantom{\lambda}\mu\nu}\delta\Gamma^{\rho}_{\phantom{\rho}\lambda\sigma}=0##. Why is this true?
It's been a long time since I took GR, so I may be misremembering. But aren't Christoffel symbols symmetric in the bottom two indices?
 
Thomas1 said:
The second part concerns the term ##\int\nabla_{\rho}A^{\rho}\sqrt{-g}\,\mathrm{d}^4x=0## where ##A^{\rho}=g^{\sigma\nu}\delta\Gamma^{\rho}_{\phantom{\rho}\nu\sigma}-g^{\sigma\rho}\delta\Gamma^{\mu}_{\phantom{\mu}\mu\sigma}##. Why is the integral zero?
It's a total derivative so vanishes by the divergence theorem upon integration over the whole spacetime. First show that\begin{align*}
\int d^4 x \sqrt{-g} \nabla_{\rho} A^{\rho} = \int d^4 x \partial_{\rho} (\sqrt{-g} A^{\rho})
\end{align*}Then use the divergence theorem of ordinary calculus\begin{align*}
\int d^4 x \partial_{\rho} (\sqrt{-g} A^{\rho}) = \oint d^3 x \sqrt{-\gamma} n_{\rho} A^{\rho}
\end{align*}where the integral on the rhs is taken over the boundary 3-surface of induced metric ##\gamma_{ab}## and normal ##n_{\rho}##
 
  • Like
Likes vanhees71 and PeroK
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top