Help in understanding the derivation of Einstein equations

user1139
Messages
71
Reaction score
8
Homework Statement
I am working through the derivation of the Einstein field equations by varying the Einstein-Hilbert action. I need some help in understanding certain steps
Relevant Equations
Given below
There are two parts to my question.

The first is concerns the variation of the Reimann tensor. I am trying to show

$$\delta R^{\rho}_{\phantom{\rho}\sigma\mu\nu}=\nabla_{\mu}\left(\delta\Gamma^{\rho}_{\phantom{\rho}\nu\sigma}\right)-\nabla_{\nu}\left(\delta\Gamma^{\rho}_{\phantom{\rho}\mu\sigma}\right)$$

In order to show the above, it is necessary that ##\Gamma^{\lambda}_{\phantom{\lambda}\nu\mu}\delta\Gamma^{\rho}_{\phantom{\rho}\lambda\sigma}-\Gamma^{\lambda}_{\phantom{\lambda}\mu\nu}\delta\Gamma^{\rho}_{\phantom{\rho}\lambda\sigma}=0##. Why is this true?

The second part concerns the term ##\int\nabla_{\rho}A^{\rho}\sqrt{-g}\,\mathrm{d}^4x=0## where ##A^{\rho}=g^{\sigma\nu}\delta\Gamma^{\rho}_{\phantom{\rho}\nu\sigma}-g^{\sigma\rho}\delta\Gamma^{\mu}_{\phantom{\mu}\mu\sigma}##. Why is the integral zero?
 
Physics news on Phys.org
Thomas1 said:
In order to show the above, it is necessary that ##\Gamma^{\lambda}_{\phantom{\lambda}\nu\mu}\delta\Gamma^{\rho}_{\phantom{\rho}\lambda\sigma}-\Gamma^{\lambda}_{\phantom{\lambda}\mu\nu}\delta\Gamma^{\rho}_{\phantom{\rho}\lambda\sigma}=0##. Why is this true?
It's been a long time since I took GR, so I may be misremembering. But aren't Christoffel symbols symmetric in the bottom two indices?
 
Thomas1 said:
The second part concerns the term ##\int\nabla_{\rho}A^{\rho}\sqrt{-g}\,\mathrm{d}^4x=0## where ##A^{\rho}=g^{\sigma\nu}\delta\Gamma^{\rho}_{\phantom{\rho}\nu\sigma}-g^{\sigma\rho}\delta\Gamma^{\mu}_{\phantom{\mu}\mu\sigma}##. Why is the integral zero?
It's a total derivative so vanishes by the divergence theorem upon integration over the whole spacetime. First show that\begin{align*}
\int d^4 x \sqrt{-g} \nabla_{\rho} A^{\rho} = \int d^4 x \partial_{\rho} (\sqrt{-g} A^{\rho})
\end{align*}Then use the divergence theorem of ordinary calculus\begin{align*}
\int d^4 x \partial_{\rho} (\sqrt{-g} A^{\rho}) = \oint d^3 x \sqrt{-\gamma} n_{\rho} A^{\rho}
\end{align*}where the integral on the rhs is taken over the boundary 3-surface of induced metric ##\gamma_{ab}## and normal ##n_{\rho}##
 
  • Like
Likes vanhees71 and PeroK
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top