Help interpret quantum states of molecular rotation and torsion

  • Context: High School 
  • Thread starter Thread starter syfry
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the interpretation of quantum states related to molecular rotation and torsion, specifically in the context of microwave photon energy ranging from 0.00001 to 0.001 eV. It clarifies that microwave photons can be absorbed by molecules, elevating them to higher energy states associated with faster oscillation modes. The conversation emphasizes the quantization of energy states in molecules, paralleling the quantized states of atoms, and highlights the significance of understanding the energy scales associated with different molecular motions.

PREREQUISITES
  • Understanding of quantum energy and photon behavior
  • Familiarity with molecular rotation and torsion concepts
  • Basic knowledge of energy quantization in atoms and molecules
  • Introductory physical chemistry principles
NEXT STEPS
  • Explore the concept of quantum energy in photons and its implications
  • Study molecular rotation and torsion in detail
  • Learn about energy quantization in molecular systems
  • Investigate the relationship between photon energy and molecular states
USEFUL FOR

Students and professionals in chemistry, particularly those interested in physical chemistry, molecular physics, and quantum mechanics, will benefit from this discussion.

syfry
Messages
172
Reaction score
21
TL;DR
Could use help understanding how to interpret a description about quantum energy of microwaves that relate to quantum states of molecules.
Was exploring how light interacts with matter out of layperson curiosity, when a sentence suddenly tripped me up:

"The quantum energy of microwave photons is in the range of 0.00001 to 0.001 eV, which is in the range of energies that separate the quantum states of molecular rotation and torsion"

That's the first time I've heard of a 'quantum energy' for light. (photons)

Also first time hearing about rotation and twisting of molecules. (had to search the meaning of torsion too)

Main issue is understanding what's affecting what in the description, and, how:

What does it mean for the twisting and turning action of molecules to be quantum states?

Are the microwaves causing that? Or is their energy separating the states? Are the states together until then?

The sentence is so brief without any clarifying description that it's unclear, and a search didn't help.

The quoted sentence is from the link below:

https://www.advancingphysics.org/how-do-light-waves-interact-with-matter

Please help me to properly interpret what that sentence is getting at (at a layperson level).
 
Physics news on Phys.org
First, molecules have a fairly complicated spectrum of states. Certain subsets of these states can be associated heuristically with what you might call normal modes (e.g., bending oscillations) in a classical multi-particle systems.

Second, molecules will be a in particular state or combination of states from their spectrum. For the molecule to move to a state of higher energy it needs to acquire that energy from somewhere.

Third, the cited article recognizes that the photon (light particle) energy for wavelengths corresponding to microwaves is close to the difference in energy between some of the states in the spectrum of molecules. So these microwave photons can be absorbed by the molecules to put them in a higher energy state. You can think of that higher energy states as being associated with modes of faster oscillation.
 
  • Like
Likes   Reactions: syfry and PeterDonis
syfry said:
That's the first time I've heard of a 'quantum energy' for light. (photons)
The energy of a photon is proportional to its frequency. See: Photon energy
 
  • Like
Likes   Reactions: syfry
It is easiest to start with atoms, in particular the hydrogen atom, see
http://hyperphysics.phy-astr.gsu.edu/hbase/Bohr.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html#c2

Once you understand this idea that the state of an atom (the relative motion of the electron and the nucleus) is quantized, i.e., only certain states of discrete energy are possible, it shouldn't be too hard to get that the same will apply to the state of a molecule, but not only for the relative motion of electrons and nuclei, but also for the relative motion of the nuclei themselves.

It turns out that the different motions are characterized by very different energy scales. In terms of the wavelength/frequency/energy of the photons implied, the highest energy states are those correspond to electronic motion (ultraviolet and visible photons), then it is the relative distance between the nuclei, known as vibrations (infrared photons), then relative position of the nuclei (torsion) and rotation of entire frame of the molecule, which as the text you cited mentioned, implied microwave photons.
 
  • Like
Likes   Reactions: syfry and Haborix
@DrClaude makes an important point about the types of motions associated with different energy scales. @syfry I know you asked for a layman level, but if you wanted to dig into this more, these kinds of things are really the meat of a subject called physical chemistry. If you've taken undergraduate level intro chemistry and have a decent handle on math, you could dig deeper, if you're interested. (And even if you don't have that background you could do it, but it would be a longer slog)
 
  • Like
Likes   Reactions: syfry

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K