MHB Help Needed: Solving x and Simplifying Equations

  • Thread starter Thread starter bigpoppapump
  • Start date Start date
  • Tags Tags
    Simplifying
bigpoppapump
Messages
5
Reaction score
0
having trouble with the following, if anyone could provide assistance it would be appreciated.

Solve for x:

1619175324265.png


and

Simplify the following:
1619175453718.png
 

Attachments

  • 1619175280121.png
    1619175280121.png
    1.2 KB · Views: 109
Mathematics news on Phys.org
Beer soaked request follows.
bigpoppapump said:
having trouble with the following, if anyone could provide assistance it would be appreciated.

Solve for x:

View attachment 11112

and

Simplify the following:
View attachment 11113
Please show us what you have tried and exactly where you are stuck.

We can't help you if we don't where you are stuck.
 
https://mathhelpboards.com/attachments/1619175324265-png.11112/
change $\sin^2{x}$ to $(1-\cos^2{x})$ and solve the resulting quadratic equation for $\cos{x}$https://mathhelpboards.com/attachments/1619175453718-png.11113/

change the cosecant and cotangent to factors in terms of sine & cosine, then simplify
 
skeeter said:
https://mathhelpboards.com/attachments/1619175324265-png.11112/
change $\sin^2{x}$ to $(1-\cos^2{x})$ and solve the resulting quadratic equation for $\cos{x}$https://mathhelpboards.com/attachments/1619175453718-png.11113/

change the cosecant and cotangent to factors in terms of sine & cosine, then simplify
Thank you. This helps, I was stuck but I have a good idea on how to solve both of these. Will work on it tonight.
 
I have managed to solved these problems with confidence which is great. Thanks for your guidance.

I have a word problem that I’m finding it difficult to convert into an equation. Could some direction be given so I can then run with it and complete.

The question is...
An electrical circuit runs at 50Hz at 0.5amps. Due to a lag in the switch, the first maximum current is reached at 6milliseconds. Assuming no variation, find an equation to model the current in this circuit using time in milliseconds.
 
frequency is the reciprocal of period (time to complete one cycle of AC)

$T = \dfrac{1}{50} = 0.02 \text{ sec } = 20 \text{ milliseconds}$

current flow (with no lag) as a function of time in milliseconds ...

$A = 0.5 \sin\left(\dfrac{\pi}{10} \cdot t \right)$

For that period, the sinusoidal graph of current would peak at $\dfrac{T}{4} = 5 \text{ milliseconds}$

Due to the lag, there is a 1 millisecond horizontal shift in the graph ...

In future, please start a new problem with a new thread.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
1K
Replies
7
Views
2K
Replies
10
Views
1K
Replies
4
Views
2K
Replies
12
Views
1K
Replies
2
Views
971
Back
Top