Help with centripetal force and friction question please

Click For Summary
SUMMARY

The discussion centers on calculating the speed of a race car entering a flat curve with a radius of 200 meters while accelerating at 2.00 m/s². The user initially calculated a speed of 37.04 m/s using the equation v² = kgr, where k is the coefficient of static friction (0.700). However, the correct approach requires considering both tangential and centripetal acceleration, leading to a lower maximum speed before sliding occurs. The final speed when the car begins to slide is determined by accounting for the tangential acceleration, which reduces the available lateral traction.

PREREQUISITES
  • Understanding of centripetal force and acceleration
  • Knowledge of static friction and its coefficient
  • Familiarity with kinematic equations
  • Ability to differentiate between tangential and centripetal acceleration
NEXT STEPS
  • Study the relationship between tangential and centripetal acceleration in circular motion
  • Learn how to apply the equations of motion to problems involving friction
  • Explore the effects of acceleration on lateral traction in vehicles
  • Investigate the implications of different coefficients of friction on vehicle dynamics
USEFUL FOR

Students studying physics, automotive engineers, and anyone interested in vehicle dynamics and frictional forces in circular motion.

takelight2
Messages
12
Reaction score
1
Homework Statement
A race car enters a flat 200-m radius curve at a speed of 20.0 m/s while increasing its speed at a constant 2.00 m/s2. If the coefficient of static friction is 0.700, what will the speed of the car be when the car begins to slide?

a- 31.5 m/s
b- 24.3 m/s
c- 28.7 m/s
d- 36.2 m/s
e- 37.1 m/s
Relevant Equations
fc = mv^2/r
Ff = kN
Ff = Fc
(mv^2)/r = kmg
(v^2)/r = kg
v^2 = kgr
v^2 = 0.7*9.8*200
v = 37.04 m/s

I chose option e, and its wrong. What am i doing wrong here?
 
Physics news on Phys.org
takelight2 said:
Homework Statement:: A race car enters a flat 200-m radius curve at a speed of 20.0 m/s while increasing its speed at a constant 2.00 m/s2. If the coefficient of static friction is 0.700, what will the speed of the car be when the car begins to slide?

a- 31.5 m/s
b- 24.3 m/s
c- 28.7 m/s
d- 36.2 m/s
e- 37.1 m/s
Relevant Equations:: fc = mv^2/r
Ff = kN

Ff = Fc
(mv^2)/r = kmg
(v^2)/r = kg
v^2 = kgr
v^2 = 0.7*9.8*200
v = 37.04 m/s

I chose option e, and its wrong. What am i doing wrong here?
There is a tangential component of acceleration. What is the magnitude of the acceleration vector?
 
Chestermiller said:
There is a tangential component of acceleration. What is the magnitude of the acceleration vector?
Tangential acceleration or centripetal acceleration, its a = v^2/r. So would be, 37.04^2/200 = 6.86 m/s^2. How does that help though?
 
takelight2 said:
Tangential acceleration or centripetal acceleration, its a = v^2/r. So would be, 37.04^2/200 = 6.86 m/s^2. How does that help though?
Tangential acceleration is different from centripetal acceleration. Only the centripetal acceleration is given by v2/r. What you are doing wrong here is that you are ignoring the tangential component of the acceleration as @Chestermiller remarked.
 
takelight2 said:
Tangential acceleration or centripetal acceleration, its a = v^2/r.
Tangential means in this case, the effort that each of the driver tires make rearwards, in order to increase the forward velocity of the car.
That force consumes some of the available “lateral traction” of the contact patch of that tire.

Your response would be correct for a tire that is rolling at constant forward velocity
If the driver is accelerating hard, adding significant torque to those driver tires, they will have diminished capability to stand lateral forces of hard cornering.
Therefore, the car will slide sideways at a lower velocity than that of option e).

traction-circle.gif
 
Last edited:
takelight2 said:
Tangential acceleration or centripetal acceleration, its a = v^2/r. So would be, 37.04^2/200 = 6.86 m/s^2. How does that help though?
##v^2/r## is the radial (centripetal) component of acceleration. The problem statement says there is also a tangential component of acceleration (i.e., in the direction tangent to the circular path, normal to the radial direction) of 2.00 m/s^2. What is the resultant acceleration?
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
893
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K