I have begun teaching myself Lagrangian field theory in preparation for taking the plunge into quantum field theory ( it's just a hobby, not any kind of formal course ). When working through exercises, I have run across the following issue which I don't quite understand. I am being given a Lagrangian density, and ask to derive the equations of motion; I understand the principles involved, and everything is fine and easy until I get to the point where I need to evaluate the following expression :(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\frac{1}{2}\frac{\partial }{\partial \left ( \partial _{\mu}\varphi \right )}\left ( \partial _{\mu}\varphi \right )^2[/tex]

wherein ##\varphi(x,y,z,t)## is a scalar field. My approach to this was as simple as it was naive :

[tex]\frac{1}{2}\frac{\partial }{\partial \left ( \partial _{\mu}\varphi \right )}\left ( \partial _{\mu}\varphi \right )^2=\frac{1}{2}\frac{\partial }{\partial \left ( \partial _{\mu}\varphi \right )}\left ( \partial _{\mu}\varphi \right )\left ( \partial _{\mu}\varphi \right )[/tex]

which evaluates to ##\partial _{\mu}\varphi## via the product rule. However, this is where I get stuck, because the answer is wrong - the correct approach should have been

[tex]\frac{1}{2}\frac{\partial }{\partial \left ( \partial _{\mu}\varphi \right )}\left ( \partial _{\mu}\varphi \right )\left ( \partial ^{\mu}\varphi \right )[/tex]

which apparently evaluates to ##\partial ^{\mu}\varphi## ( though I have difficulties with that as well, but that's a separate issue ), and leads to the correct equations of motion. My question is : why is ##\left ( \partial _{\mu}\varphi \right )^2=\left ( \partial _{\mu}\varphi \right )\left ( \partial ^{\mu}\varphi \right )## and not ##\left ( \partial _{\mu}\varphi \right )^2=\left ( \partial _{\mu}\varphi \right )\left ( \partial _{\mu}\varphi \right )## ? I know that this is probably something very elementary, so please don't laugh at me, but I genuinely don't get it.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Help with Euler-Lagrange Equation

Have something to add?

Draft saved
Draft deleted

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**