MHB Help with Logarithms: Find 2^A

  • Thread starter Thread starter IHateFactorial
  • Start date Start date
  • Tags Tags
    Logarithms
Click For Summary
The discussion revolves around solving the expression for A, which involves logarithmic calculations. The user has factored logarithms of 3, 6, 12, and 24 to simplify the equation. They derive a complex polynomial in terms of log base 2 of 3 but express uncertainty about their calculations. A participant questions the accuracy of the original expression for A, suggesting a potential error in transcription. The conversation highlights the challenges in manipulating logarithmic functions and the need for careful verification of mathematical expressions.
IHateFactorial
Messages
15
Reaction score
0
So, there's this problem:

$$A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({6})\right)^3 - (\log_{2}\left({12})\right)^3 - (\log_{2}\left({24})\right)^3)$$

Find $$2^A$$

What I've figured out is that all the logs factorize to 3 + 2 to some power of n.

$$\log_{2}\left({3}\right)=\log_{2}\left({3\cdot2^0}\right)$$
$$\log_{2}\left({6}\right)=\log_{2}\left({3\cdot2^1}\right)$$
$$\log_{2}\left({12}\right)=\log_{2}\left({3\cdot2^2}\right)$$
$$\log_{2}\left({24}\right)=\log_{2}\left({3\cdot2^3}\right)$$

Solving THAT gives me:

$$A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({3})+1\right)^3 - (\log_{2}\left({3})+2\right)^3 - (\log_{2}\left({3})+3\right)^3)$$

$$A = \frac{1}{6}(-2(\log_{2}\left({3})\right)^3 - 6(\log_{2}\left({3})\right)^2 - 14(\log_{2}\left({3})\right)-36$$

$$A = \frac{-1}{3}(\log_{2}\left({3})\right)^3 - (\log_{2}\left({3})\right)^2 - \frac{7}{3}(\log_{2}\left({3})\right)-6$$

And... Now? I believe I screwed up SOMEWHERE aloing that line... And I'm completely stuck as to how to go on, any ideas?
 
Mathematics news on Phys.org
IHateFactorial said:
So, there's this problem:

$$A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({6})\right)^3 - (\log_{2}\left({12})\right)^3 - (\log_{2}\left({24})\right)^3)$$

Find $$2^A$$

I am very curious and wanted to ask if you're certain that you've typed everything correctly for the expression for $A$?
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K