MHB Help with Logarithms: Find 2^A

  • Thread starter Thread starter IHateFactorial
  • Start date Start date
  • Tags Tags
    Logarithms
AI Thread Summary
The discussion revolves around solving the expression for A, which involves logarithmic calculations. The user has factored logarithms of 3, 6, 12, and 24 to simplify the equation. They derive a complex polynomial in terms of log base 2 of 3 but express uncertainty about their calculations. A participant questions the accuracy of the original expression for A, suggesting a potential error in transcription. The conversation highlights the challenges in manipulating logarithmic functions and the need for careful verification of mathematical expressions.
IHateFactorial
Messages
15
Reaction score
0
So, there's this problem:

$$A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({6})\right)^3 - (\log_{2}\left({12})\right)^3 - (\log_{2}\left({24})\right)^3)$$

Find $$2^A$$

What I've figured out is that all the logs factorize to 3 + 2 to some power of n.

$$\log_{2}\left({3}\right)=\log_{2}\left({3\cdot2^0}\right)$$
$$\log_{2}\left({6}\right)=\log_{2}\left({3\cdot2^1}\right)$$
$$\log_{2}\left({12}\right)=\log_{2}\left({3\cdot2^2}\right)$$
$$\log_{2}\left({24}\right)=\log_{2}\left({3\cdot2^3}\right)$$

Solving THAT gives me:

$$A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({3})+1\right)^3 - (\log_{2}\left({3})+2\right)^3 - (\log_{2}\left({3})+3\right)^3)$$

$$A = \frac{1}{6}(-2(\log_{2}\left({3})\right)^3 - 6(\log_{2}\left({3})\right)^2 - 14(\log_{2}\left({3})\right)-36$$

$$A = \frac{-1}{3}(\log_{2}\left({3})\right)^3 - (\log_{2}\left({3})\right)^2 - \frac{7}{3}(\log_{2}\left({3})\right)-6$$

And... Now? I believe I screwed up SOMEWHERE aloing that line... And I'm completely stuck as to how to go on, any ideas?
 
Mathematics news on Phys.org
IHateFactorial said:
So, there's this problem:

$$A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({6})\right)^3 - (\log_{2}\left({12})\right)^3 - (\log_{2}\left({24})\right)^3)$$

Find $$2^A$$

I am very curious and wanted to ask if you're certain that you've typed everything correctly for the expression for $A$?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
2
Views
2K
Replies
3
Views
2K
Replies
11
Views
4K
Replies
1
Views
2K
Replies
1
Views
4K
Replies
2
Views
2K
Replies
8
Views
3K
Back
Top