Help with Understanding Ground Loops

  • Thread starter Thread starter fog37
  • Start date Start date
  • Tags Tags
    Ground Loops
AI Thread Summary
Ground loops occur when circuits have different reference potentials, leading to unwanted current flow when connected. This can create parallel circuits that introduce extraneous currents, potentially causing issues like DC corrosion if ground currents are strong. In well-designed DC networks, the voltage drop is minimized, making ground loops less problematic. However, in AC networks, complexities arise due to induced EMF and self-inductance, particularly in applications like railway systems where grounding is critical. In digital designs, ground loops can adversely affect signal integrity between components like CPUs and RAM.
fog37
Messages
1,566
Reaction score
108
TL;DR Summary
Understanding the issue with ground loops
Hello,

When connecting different circuits together, the reference electric potential ##V_{ref}## (the ##0 Volt##) for each circuit should be the same electric potential so the potential at all other points is the same.

If circuit 1 has reference ##V_{ref1}## and circuit 2 has ##V_{ref2}## with ##V_{ref1}\neq V_{ref2}##, when the two reference potentials are connected, a current will flow along that connection...What is the problem with that? Does a return current always flow anyway along the ground/reference conductor?

thanks for any clarifications
 
Engineering news on Phys.org
Maybe this figure helps:

1585873180647.png


The two Earth connection points are there solely for protection. However, if their electric potential is different, then it is like adding an extra circuit with an extraneous current in parallel to the main circuit (lower portion of the figure)...

1585873180647.png
 
DC source current is simply divided between wire and ground in proportion Rground/Rwire. In a well designed DC network this isn't an issue since allowed voltage drop is small and Rground>>Rwire. If local ground currents are sufficiently strong that may cause unwanted DC corrosion effects.
Situation is more complicated in AC large networks due to induced EMF in the loop and self-inductance of the "return wire". Good example is an AC monophase railway network where rails must be solidly grounded as often as possible and special attention is paid to such issues.
 
Last edited:
  • Like
Likes fog37
Let's say you have a ground plane in a high speed, low voltage digital design. For example, just a CPU and a RAM.
Let's say you have a ground loop across that plane (by any reason).
What will that current do with the signal to/from the RAM? What will the devices 'see'?
 
  • Like
Likes fog37 and berkeman
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Back
Top