A HHL quantum algorithm and the phase estimation

Click For Summary
The HHL algorithm's controlled unitary, integral to the Hamiltonian simulation in Quantum Phase Estimation, is directly influenced by the coefficients of the Hermitian matrix. These coefficients define the system's Hamiltonian, which is essential for constructing the controlled unitary. The Hamiltonian facilitates the evolution of the state vector over time. This evolved state vector is crucial for estimating the eigenvalues of the Hamiltonian. Understanding this relationship is key to effectively implementing the HHL algorithm.
marka909
Messages
1
Reaction score
0
TL;DR
In HHL algorithm, does the controlled unitary (Hamiltonian simulation part of Quantum phase estimation) depend on Hermitian matrix coefficients and how?
In HHL algorithm, does the controlled unitary (Hamiltonian simulation part of Quantum phase estimation) depend on Hermitian matrix coefficients and how?
 
Physics news on Phys.org
Yes, the controlled unitary used in the Hamiltonian simulation part of Quantum Phase Estimation depends on the Hermitian matrix coefficients. Specifically, the controlled unitary is constructed from the matrix coefficients of the Hermitian matrix that describes the system’s Hamiltonian. The Hamiltonian is then used to evolve the given state vector over a period of time, and the resulting state vector can be used to estimate the eigenvalues of the Hamiltonian.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
0
Views
923
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K