tom.stoer
Science Advisor
- 5,774
- 174
Nice turn!
This is indeed how many people today think about holography. The volume degrees of freedom of a certain system are represented by a boundary Hilbert space living on the surface. These boundaries need not be physical; they can be introduced rather artificially, e.g. as boundary between a "quantum system" and an "observer". Then the Hilbert space structure encodes naturally what we (= the observer) can know about the system, as we (the observer) have defined what this system really _is_ - namely in drawing the boundary.
This is indeed how many people today think about holography. The volume degrees of freedom of a certain system are represented by a boundary Hilbert space living on the surface. These boundaries need not be physical; they can be introduced rather artificially, e.g. as boundary between a "quantum system" and an "observer". Then the Hilbert space structure encodes naturally what we (= the observer) can know about the system, as we (the observer) have defined what this system really _is_ - namely in drawing the boundary.