How are eigenvalues connected to the solutions of the Schrödinger equation?

Click For Summary
SUMMARY

The discussion centers on the connection between eigenvalues and the solutions of the time-independent Schrödinger equation in quantum mechanics. Participants clarify that the eigenvalues correspond to the energy levels (E) of the Hamiltonian operator (H) acting on the wave function (ψ). They emphasize the importance of Hermitian operators, which ensure that eigenvalues are real and represent measurable quantities. The conversation also suggests alternative resources, such as A. Messiah's "Quantum Mechanics" and Siegfried Fluegge's "Practical Quantum Mechanics I," for a more comprehensive understanding of these concepts.

PREREQUISITES
  • Understanding of the time-independent Schrödinger equation
  • Familiarity with Hamiltonian operators in quantum mechanics
  • Knowledge of Hermitian operators and their significance
  • Basic concepts of wave functions and probability in quantum mechanics
NEXT STEPS
  • Study the time-independent Schrödinger equation in detail
  • Learn about the properties and applications of Hermitian operators
  • Explore the role of eigenvalues and eigenvectors in quantum mechanics
  • Review quantum mechanics textbooks, particularly A. Messiah's and Siegfried Fluegge's works
USEFUL FOR

Students and enthusiasts of quantum mechanics, particularly those seeking to understand the mathematical foundations of the Schrödinger equation and the role of eigenvalues in physical observables.

Leo32
Messages
31
Reaction score
1
I'm reading an introductionary text on quantum physics and am stumbling a bit with the terms used.

The text discusses a finite potential box (one dimension, time independent). It calculates the conditions for the solutions of the wave functions, which I can follow perfectly.

At that point however, the text starts mentioning eigenvalues, completely out of the blue. After pondering already a few hours over what the autor might mean by it, the only possibility I see is that these are the eigenvalues of the Hamiltonian on the wave function.
From these eigenvalues, the text loops foreward to present the solutions right away.

Can somebody help me complete the jump from local conditions for wave functions, to eigenvalues, and then to actual solutions ?

Thanks !
Leo
 
Physics news on Phys.org
The book should have a discussion of operators that operate on the wave function. The Hilbert operator is one of them, but there should also be position and momentum operators. Since they operate on the complex wave function they are complex operators. The book should state or show that these operators are Hermitian (or it may possibly say self adjoint :)), and that this makes the eigenvalues of those operators real. Then when you apply the operator to the wave function you get a set of real eigenvalues and eigenvectors of the wave function. The eigenvector represents a possible outcome of your observation and the eigenvalue, when normalized, gives the probability of that outcome among the set.
 
selfAdjoint said:
The book should state or show that these operators are Hermitian (or it may possibly say self adjoint :)), and that this makes the eigenvalues of those operators real.

Any good QM book should not discuss hermitean/symmetrical operators (hence nonselfadjoint) wrt physical observables.Though the distinction between those type of operators is merely mathematical subtility,it was important enough to be stated in the Second Principle of QM,where the notion of "self adjoint" is used to depict liniar operators (on the separable Hilbert space of states) associated by the so-called "quantization" to the obserable quantities.
 
Leo32 said:
I'm reading an introductionary text on quantum physics and am stumbling a bit with the terms used.

The text discusses a finite potential box (one dimension, time independent). It calculates the conditions for the solutions of the wave functions, which I can follow perfectly.

At that point however, the text starts mentioning eigenvalues, completely out of the blue. After pondering already a few hours over what the autor might mean by it, the only possibility I see is that these are the eigenvalues of the Hamiltonian on the wave function.
From these eigenvalues, the text loops foreward to present the solutions right away.

Can somebody help me complete the jump from local conditions for wave functions, to eigenvalues, and then to actual solutions ?

Thanks !
Leo


It's better if you change the book and consider something else to guide you through learning QM.A nice description of the problem appears in A.Messiah:"Quantum mechanics",volume 1,chapter 3 (the edition is irrelevant) and in Siegfried Fluegge"Practical Quantum Mechanics I",Springer-Verlag Berlin Heidelberg New York,1971,chapter 2 ("One body problems without spin").
Good luck!
 
Leo32,

Sounds like you're on the right track. The time-indepedent Schrödinger equation is:

H\psi = E\psi

where H is the Hamiltonian and E is the energy.

This is an eigenvector equation, where the linearly-independent solutions are the eigenvectors of H, and the corresponding eigenvalues are the values of E which make the equation hold for the different \psis.
 
selfAdjoint said:
The book should have a discussion of operators that operate on the wave function. The Hilbert operator is one of them, but there should also be position and momentum operators. Since they operate on the complex wave function they are complex operators. The book should state or show that these operators are Hermitian (or it may possibly say self adjoint :)), and that this makes the eigenvalues of those operators real.

It does carry the discussion, but not in an "applied" way so to speak. I was just strugling to connect the more or less mathematical theory to the application in this case. Think I got it now however, but just to check:

- The Schrödinger equation is basically a differential equation, which also contains the conditions for the calculations of eigenvalues (Hamiltonean being the matrix, E being the eigenvalue and the wave function being the eigenvector)
- Calculate solutions for the Schrödinger equation for various conditions (here, the presence of a fixed potential over a certain range)
- Put foreward conditions that the wave functions are continuous and their derivatives as well
- Make sure the integral of the probability (psi*psi) of the total interval = 1

Thanks !

Leo
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
6K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
10
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K