How Are Wigner D Functions Related to Nuclear Rotor Model Wave Functions?

patric44
Messages
308
Reaction score
40
Homework Statement
Φ = ((2l+1)/8pi^2) D^{j}_{MK}
Relevant Equations
why the nuclear rotor model wave function is written in terms of Wigner D functions?
hi guys
I am recently taking a Nuclear structure course, and have a lot of questions regarding the nuclear rotor model.
in most nuclear physics books the I have, the wave function associated with the rotor model of the nucleus is written in terms of the Wigner D functions , like the expression below
$$
\bra{\theta\;\phi\;\psi}\ket{JMK} = c(D^{J}_{MK}+(-1)^{J}D^{J}_{M-K})
$$
where c is a constant, I am a little bit familiar with the rotation matrix and its representation in the angular momentum basis , isn't the Wigner D functions is just the matrix elements of the rotation matrix in 3d ? , what is the relation between D functions and the eigen functions of the rotor model?
can anyone explain how the formula above is derived, or refer to a good book or a set of lecture notes in theoretical nuclear physics.
thanks in advance.
 
Physics news on Phys.org
can anyone explain what this expression mean
$$
\bra{\psi,\theta,\phi}\ket{IMK} = c D^{I}_{MK}
$$
isn't that the projection of the sate represented by IMK on the basis represented by psi,theta,phi?
why is that interpreted as the matrix elements of the rotation operator?
 
patric44 said:
I am recently taking a Nuclear structure course, and have a lot of questions regarding the nuclear rotor model.
in most nuclear physics books the I have, the wave function associated with the rotor model of the nucleus is written in terms of the Wigner D functions
Just curious, which textbooks are you referring to? ##: )##
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top