MHB How can AM-GM be used to solve the Inequality Challenge II?

AI Thread Summary
The discussion centers on proving the inequality involving the sum of cube roots and a series of fractions. A proposed approach involves manipulating the terms to facilitate comparison, specifically by rewriting parts of the inequality and applying the AM-GM inequality. The participants highlight that the left side can be expressed as a sum of differences, while the right side consists of a series of fractions. The AM-GM argument is recognized as a key method to establish the desired inequality, demonstrating that the left-hand terms are indeed less than the right-hand terms. The conversation concludes with acknowledgment of the effectiveness of this approach and the excitement for further solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that

$\sqrt[3]{\dfrac{2}{1}}+\sqrt[3]{\dfrac{3}{2}}+\cdots+\sqrt[3]{\dfrac{996}{995}}-\dfrac{1989}{2}<\dfrac{1}{3}+\dfrac{1}{6}+\cdots+ \dfrac{1}{8961}$
 
Mathematics news on Phys.org
anemone said:
Prove that

$\sqrt[3]{\dfrac{2}{1}}+\sqrt[3]{\dfrac{3}{2}}+\cdots+\sqrt[3]{\dfrac{996}{995}}-\dfrac{1989}{2}<\dfrac{1}{3}+\dfrac{1}{6}+\cdots+ \dfrac{1}{8961}$
Not a solution, but a possible line of approach:
[sp]Start by noticing that $\dfrac{1989}2 = 995 - \dfrac12$, and $\dfrac1{8961} = \dfrac1{9\cdot995+6}.$ Next, notice that $\dfrac12 = \dfrac13+\dfrac16$. So we can subtract $\dfrac12$ from the left side, and $\dfrac13+\dfrac16$ from the right side, so that the inequality becomes $$\sqrt[3]{\dfrac{2}{1}} +\sqrt[3]{\dfrac{3}{2}} +\ldots +\sqrt[3]{\dfrac{996}{995}} - 995 < \frac19 + \frac1{12} + \frac1{15} + \ldots + \frac1{9\cdot995} + \frac1{9\cdot995+3} + \frac1{9\cdot995+6}.$$ If we write this as $$\sum_{n=1}^{995}\Bigl(\sqrt[3]{\dfrac{n+1}n} - 1\Bigr) < \sum_{n=1}^{995}\Bigl(\frac1{9n} + \frac1{9n+3} + \frac1{9n+6}\Bigr),$$ then it is tempting to think that each term on the left might be less than the corresponding term on the right, in other words $$\sqrt[3]{\dfrac{n+1}n} - 1 < \frac1{9n} + \frac1{9n+3} + \frac1{9n+6}\quad (\text{for all }n\geqslant 1).$$ I believe that is true. It certainly holds for $n=1$, because $\sqrt[3]{2} -1 \approx 0.2599$ and $\frac19 + \frac1{12} + \frac1{15} \approx 0.2611$. It also appears to hold for other values of $n$. But it is a delicate inequality – the difference between the two sides is extremely small – and I have not found any convenient way to prove it.[/sp]

Edit, Oh, it's suddenly obvious!
[sp]It's just an AM-GM argument: $$\begin{aligned} \sqrt[3]{\dfrac{n+1}n} &= \sqrt[3]{\dfrac{3n+1}{3n} \cdot \dfrac{3n+2}{3n+1} \cdot \dfrac{3n+3}{3n+2}} \\ &< \frac13\Bigl( \dfrac{3n+1}{3n} + \dfrac{3n+2}{3n+1} + \dfrac{3n+3}{3n+2} \Bigr) \\ &= \frac13\Bigl(1 + \frac1{3n} + 1 + \frac1{3n+1} + 1 + \frac1{3n+2} \Bigr) \\ &= 1 + \frac1{9n} + \frac1{9n+3} + \frac1{9n+6}. \end{aligned}$$ [/sp]
 
Last edited:
Opalg said:
Not a solution, but a possible line of approach:
[sp]Start by noticing that $\dfrac{1989}2 = 995 - \dfrac12$, and $\dfrac1{8961} = \dfrac1{9\cdot995+6}.$ Next, notice that $\dfrac12 = \dfrac13+\dfrac16$. So we can subtract $\dfrac12$ from the left side, and $\dfrac13+\dfrac16$ from the right side, so that the inequality becomes $$\sqrt[3]{\dfrac{2}{1}} +\sqrt[3]{\dfrac{3}{2}} +\ldots +\sqrt[3]{\dfrac{996}{995}} - 995 < \frac19 + \frac1{12} + \frac1{15} + \ldots + \frac1{9\cdot995} + \frac1{9\cdot995+3} + \frac1{9\cdot995+6}.$$ If we write this as $$\sum_{n=1}^{995}\Bigl(\sqrt[3]{\dfrac{n+1}n} - 1\Bigr) < \sum_{n=1}^{995}\Bigl(\frac1{9n} + \frac1{9n+3} + \frac1{9n+6}\Bigr),$$ then it is tempting to think that each term on the left might be less than the corresponding term on the right, in other words $$\sqrt[3]{\dfrac{n+1}n} - 1 < \frac1{9n} + \frac1{9n+3} + \frac1{9n+6}\quad (\text{for all }n\geqslant 1).$$ I believe that is true. It certainly holds for $n=1$, because $\sqrt[3]{2} -1 \approx 0.2599$ and $\frac19 + \frac1{12} + \frac1{15} \approx 0.2611$. It also appears to hold for other values of $n$. But it is a delicate inequality – the difference between the two sides is extremely small – and I have not found any convenient way to prove it.[/sp]

That is a good line with all excellent observations, Opalg!(Nerd)

Opalg said:
Edit, Oh, it's suddenly obvious!
[sp]It's just an AM-GM argument – details to follow tomorrow.[/sp]

I can't wait to read your solution...:o
 
anemone said:
I can't wait to read your solution...:o
Previous comment now edited to complete solution. (Emo)
 
Opalg said:
Edit, Oh, it's suddenly obvious!
[sp]It's just an AM-GM argument: $$\begin{aligned} \sqrt[3]{\dfrac{n+1}n} &= \sqrt[3]{\dfrac{3n+1}{3n} \cdot \dfrac{3n+2}{3n+1} \cdot \dfrac{3n+3}{3n+2}} \\ &< \frac13\Bigl( \dfrac{3n+1}{3n} + \dfrac{3n+2}{3n+1} + \dfrac{3n+3}{3n+2} \Bigr) \\ &= \frac13\Bigl(1 + \frac1{3n} + 1 + \frac1{3n+1} + 1 + \frac1{3n+2} \Bigr) \\ &= 1 + \frac1{9n} + \frac1{9n+3} + \frac1{9n+6}. \end{aligned}$$ [/sp]

Bravo, Opalg! The solution that I have is quite similar as yours and thus I won't reveal it and for your information, I am not the mastermind who provided that solution. :o
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top