How can AM-GM be used to solve the Inequality Challenge II?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The forum discussion centers on proving the inequality involving cube roots and harmonic series: $$\sqrt[3]{\dfrac{2}{1}}+\sqrt[3]{\dfrac{3}{2}}+\cdots+\sqrt[3]{\dfrac{996}{995}}-\dfrac{1989}{2}<\dfrac{1}{3}+\dfrac{1}{6}+\cdots+ \dfrac{1}{8961}.$$ Participants suggest using the AM-GM inequality to approach the problem, particularly noting that $$\sqrt[3]{\dfrac{n+1}{n}} < 1 + \frac{1}{9n} + \frac{1}{9n+3} + \frac{1}{9n+6}.$$ This leads to a comparison of sums that supports the original inequality. The discussion highlights the delicate nature of the inequality and the challenge in proving it definitively.

PREREQUISITES
  • Understanding of AM-GM (Arithmetic Mean-Geometric Mean) inequality
  • Familiarity with cube roots and their properties
  • Basic knowledge of series and summation techniques
  • Experience with inequalities in mathematical proofs
NEXT STEPS
  • Study the AM-GM inequality in depth, focusing on its applications in proofs.
  • Explore cube root properties and their implications in inequalities.
  • Investigate harmonic series and their convergence properties.
  • Practice proving inequalities using various mathematical techniques.
USEFUL FOR

Mathematicians, students studying advanced calculus or analysis, and anyone interested in inequality proofs and mathematical reasoning.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that

$\sqrt[3]{\dfrac{2}{1}}+\sqrt[3]{\dfrac{3}{2}}+\cdots+\sqrt[3]{\dfrac{996}{995}}-\dfrac{1989}{2}<\dfrac{1}{3}+\dfrac{1}{6}+\cdots+ \dfrac{1}{8961}$
 
Mathematics news on Phys.org
anemone said:
Prove that

$\sqrt[3]{\dfrac{2}{1}}+\sqrt[3]{\dfrac{3}{2}}+\cdots+\sqrt[3]{\dfrac{996}{995}}-\dfrac{1989}{2}<\dfrac{1}{3}+\dfrac{1}{6}+\cdots+ \dfrac{1}{8961}$
Not a solution, but a possible line of approach:
[sp]Start by noticing that $\dfrac{1989}2 = 995 - \dfrac12$, and $\dfrac1{8961} = \dfrac1{9\cdot995+6}.$ Next, notice that $\dfrac12 = \dfrac13+\dfrac16$. So we can subtract $\dfrac12$ from the left side, and $\dfrac13+\dfrac16$ from the right side, so that the inequality becomes $$\sqrt[3]{\dfrac{2}{1}} +\sqrt[3]{\dfrac{3}{2}} +\ldots +\sqrt[3]{\dfrac{996}{995}} - 995 < \frac19 + \frac1{12} + \frac1{15} + \ldots + \frac1{9\cdot995} + \frac1{9\cdot995+3} + \frac1{9\cdot995+6}.$$ If we write this as $$\sum_{n=1}^{995}\Bigl(\sqrt[3]{\dfrac{n+1}n} - 1\Bigr) < \sum_{n=1}^{995}\Bigl(\frac1{9n} + \frac1{9n+3} + \frac1{9n+6}\Bigr),$$ then it is tempting to think that each term on the left might be less than the corresponding term on the right, in other words $$\sqrt[3]{\dfrac{n+1}n} - 1 < \frac1{9n} + \frac1{9n+3} + \frac1{9n+6}\quad (\text{for all }n\geqslant 1).$$ I believe that is true. It certainly holds for $n=1$, because $\sqrt[3]{2} -1 \approx 0.2599$ and $\frac19 + \frac1{12} + \frac1{15} \approx 0.2611$. It also appears to hold for other values of $n$. But it is a delicate inequality – the difference between the two sides is extremely small – and I have not found any convenient way to prove it.[/sp]

Edit, Oh, it's suddenly obvious!
[sp]It's just an AM-GM argument: $$\begin{aligned} \sqrt[3]{\dfrac{n+1}n} &= \sqrt[3]{\dfrac{3n+1}{3n} \cdot \dfrac{3n+2}{3n+1} \cdot \dfrac{3n+3}{3n+2}} \\ &< \frac13\Bigl( \dfrac{3n+1}{3n} + \dfrac{3n+2}{3n+1} + \dfrac{3n+3}{3n+2} \Bigr) \\ &= \frac13\Bigl(1 + \frac1{3n} + 1 + \frac1{3n+1} + 1 + \frac1{3n+2} \Bigr) \\ &= 1 + \frac1{9n} + \frac1{9n+3} + \frac1{9n+6}. \end{aligned}$$ [/sp]
 
Last edited:
Opalg said:
Not a solution, but a possible line of approach:
[sp]Start by noticing that $\dfrac{1989}2 = 995 - \dfrac12$, and $\dfrac1{8961} = \dfrac1{9\cdot995+6}.$ Next, notice that $\dfrac12 = \dfrac13+\dfrac16$. So we can subtract $\dfrac12$ from the left side, and $\dfrac13+\dfrac16$ from the right side, so that the inequality becomes $$\sqrt[3]{\dfrac{2}{1}} +\sqrt[3]{\dfrac{3}{2}} +\ldots +\sqrt[3]{\dfrac{996}{995}} - 995 < \frac19 + \frac1{12} + \frac1{15} + \ldots + \frac1{9\cdot995} + \frac1{9\cdot995+3} + \frac1{9\cdot995+6}.$$ If we write this as $$\sum_{n=1}^{995}\Bigl(\sqrt[3]{\dfrac{n+1}n} - 1\Bigr) < \sum_{n=1}^{995}\Bigl(\frac1{9n} + \frac1{9n+3} + \frac1{9n+6}\Bigr),$$ then it is tempting to think that each term on the left might be less than the corresponding term on the right, in other words $$\sqrt[3]{\dfrac{n+1}n} - 1 < \frac1{9n} + \frac1{9n+3} + \frac1{9n+6}\quad (\text{for all }n\geqslant 1).$$ I believe that is true. It certainly holds for $n=1$, because $\sqrt[3]{2} -1 \approx 0.2599$ and $\frac19 + \frac1{12} + \frac1{15} \approx 0.2611$. It also appears to hold for other values of $n$. But it is a delicate inequality – the difference between the two sides is extremely small – and I have not found any convenient way to prove it.[/sp]

That is a good line with all excellent observations, Opalg!(Nerd)

Opalg said:
Edit, Oh, it's suddenly obvious!
[sp]It's just an AM-GM argument – details to follow tomorrow.[/sp]

I can't wait to read your solution...:o
 
anemone said:
I can't wait to read your solution...:o
Previous comment now edited to complete solution. (Emo)
 
Opalg said:
Edit, Oh, it's suddenly obvious!
[sp]It's just an AM-GM argument: $$\begin{aligned} \sqrt[3]{\dfrac{n+1}n} &= \sqrt[3]{\dfrac{3n+1}{3n} \cdot \dfrac{3n+2}{3n+1} \cdot \dfrac{3n+3}{3n+2}} \\ &< \frac13\Bigl( \dfrac{3n+1}{3n} + \dfrac{3n+2}{3n+1} + \dfrac{3n+3}{3n+2} \Bigr) \\ &= \frac13\Bigl(1 + \frac1{3n} + 1 + \frac1{3n+1} + 1 + \frac1{3n+2} \Bigr) \\ &= 1 + \frac1{9n} + \frac1{9n+3} + \frac1{9n+6}. \end{aligned}$$ [/sp]

Bravo, Opalg! The solution that I have is quite similar as yours and thus I won't reveal it and for your information, I am not the mastermind who provided that solution. :o
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K