How can contour integration be used to solve this week's problem?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
Contour integration can be applied to solve the problem of evaluating the integral of the given function by utilizing techniques such as residue theorem and selecting appropriate contours in the complex plane. The integral involves a function with poles, and careful analysis of these poles is essential for deriving the result. The expected outcome is a specific expression involving the exponential function and absolute value of the variable. The problem remains unsolved by other participants, indicating a need for clarity in the application of contour integration methods. A complete solution is provided by the original poster, showcasing the effectiveness of contour integration in this context.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Use contour integration to show that
\[\int_{-\infty}^{\infty}\frac{e^{-2\pi i x\xi}}{(1+x^2)^2}\,dx = \frac{\pi}{2}(1+2\pi|\xi|)e^{-2\pi|\xi|} \]
for all $\xi$ real.

-----

Hint:
WLOG, suppose that $\xi\geq 0$ (this way, you don't have to worry about the absolute values for the time being). Then consider using the lower half circle as the contour for this integral.

 
Physics news on Phys.org
No one answered this week's question. Here's my solution below.

WLOG, suppose that $\xi\geq 0$ (so we don't have to worry about absolute values for the time being). Let the closed contour $\Gamma$ be the lower half circle. Let $f(z)=\frac{e^{-2\pi i z\xi}}{(1+z^2)^2}$. Clearly, $f(z)$ has two poles of order $2$ at $z=i$ and $z=-i$. Based on how we defined $\Gamma$, $z=i$ is not contained within the closed contour, so we need to find the residue at $z=-i$. We see that\[\begin{aligned}\text{res}_{-i}f(z) &= \lim_{z\to-i}\frac{\,d}{\,dz}\left[\frac{e^{-2\pi i z\xi}}{(z-i)^2}\right]\\ &=\lim_{z\to-i}\frac{-2\pi i \xi(z-i)^2e^{-2\pi i z\xi}-2(z-i)e^{-2\pi iz\xi}}{(z-i)^4}\\ &=-i\frac{(1+2\pi\xi)e^{-2\pi\xi}}{4}\end{aligned}\]
Therefore, by the residue theorem, we see that
\[\int_{\Gamma}\frac{e^{-2\pi iz\xi}}{(1+z^2)^2} = \int_{-R}^{R}\frac{e^{-2\pi i x\xi}}{(1+x^2)^2}+\int_{C_R}\frac{e^{-2\pi iz\xi}}{(1+z^2)^2} = \frac{\pi}{2}(1+2\pi\xi)e^{-2\pi\xi}\]
Observe that $e^{-2\pi iz\xi}\leq 1$ for $\text{Im}z\leq 0$ and $\xi\geq 0$. Thus, as $R\rightarrow\infty$,
\[\left|\int_{C_R}\frac{e^{-2\pi iz\xi}}{(1+z^2)^2}\,dz\right|\leq \frac{\pi R}{(R^2+1)^2}\]
which goes to zero. Therefore, as $R\rightarrow\infty$, we have
\[\int_{-\infty}^{\infty}\frac{e^{-2\pi ix\xi}}{(1+x^2)^2}\,dx=\frac{\pi}{2}(1+2\pi|\xi|)e^{-2\pi|xi|}\]
and the proof is complete.

(PS: I just finished posting a solution to POTW 42, so feel free to check that out too!)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
1
Views
2K