scook116 said:
Surely,
View attachment 2120
also,
dx/dt=u0 and
dy/dt=(dy/dx)(dx/dt). So sorry >.<
No worries...it just helps to have these details. So, let's begin with:
$$y=\left(\frac{x}{L} \right)^2\left(\frac{2hx}{L}+3h \right)$$
Differentiating with respect to $t$, we obtain:
$$\frac{dy}{dt}=2\left(\frac{x}{L} \right)\left(\frac{1}{L}\frac{dx}{dt} \right)\left(\frac{2hx}{L}+3h \right)+\left(\frac{x}{L} \right)^2\left(\frac{2h}{L}\frac{dx}{dt} \right)$$
Now factoring, we may write (using $$u_0=\frac{dx}{dt}$$):
$$\frac{dy}{dt}=\frac{2hu_0}{L}\left(\frac{x}{L} \left(\frac{2x}{L}+3 \right)+ \left(\frac{x}{L} \right)^2 \right)$$
$$\frac{dy}{dt}=\frac{6hu_0}{L}\left(\left(\frac{x}{L} \right)^2+\left(\frac{x}{L} \right) \right)$$
So, I do agree with the first derivative you posted. Now differentiate again, observing that $$u_0=\frac{dx}{dt}$$ is a constant:
$$\frac{d}{dt}\left(\frac{dy}{dt} \right)=\frac{6hu_0}{L} \frac{d}{dt}\left(\left(\frac{x}{L} \right)^2+\frac{x}{L} \right)$$
When you apply the rules of differentiation, you will get the result you cited. Can you give it a try seeing how I derived the first derivative?