- #1
tomwilliam
- 145
- 2
I'm coming back to maths (calculus of variations) after a long hiatus, and am a little rusty. I can't remember how to do the following derivative:
##
\frac{d}{d\epsilon}\left(\sqrt{1 + (y' + \epsilon g')^2}\right)
##
where ##y, g## are functions of ##x##
I know I should substitute say ##u = 1 + (y' + \epsilon g')^2##
then use the chain rule, ## \frac{\partial\sqrt{u}}{\partial x} \frac{\partial x}{\partial \epsilon}##
But now I'm a little stuck. Can anyone help with a pointer?
I know what the final answer is, but can't get there.
Thanks
##
\frac{d}{d\epsilon}\left(\sqrt{1 + (y' + \epsilon g')^2}\right)
##
where ##y, g## are functions of ##x##
I know I should substitute say ##u = 1 + (y' + \epsilon g')^2##
then use the chain rule, ## \frac{\partial\sqrt{u}}{\partial x} \frac{\partial x}{\partial \epsilon}##
But now I'm a little stuck. Can anyone help with a pointer?
I know what the final answer is, but can't get there.
Thanks