Undergrad How can I find all possible Jordan forms?

Click For Summary
To find all possible Jordan forms for the linear transformation T defined by the equation (T^7 + 2I)(T^2 + 3T + 2I)^2 = 0, it's essential to factor the equation and identify the roots, which relate to the eigenvalues. The minimal polynomials can be expressed as (x+1)^a(x+2)^b, with constraints on the values of a and b. The minimal polynomial divides the characteristic polynomial, which is necessary for determining the Jordan form. Understanding the roots of T and the factor T^7 + 2I is crucial for completing the analysis. The discussion emphasizes the importance of these factors in deriving the characteristic polynomial and ultimately the Jordan form.
laurabon
Messages
17
Reaction score
0
TL;DR
find all possible Jordan forms
Hi this is my first message in this forum , I have this problem in my linear algebra course and I have never seen this type. Let $T : \mathbb{Q}^3 → \mathbb{Q}^3 $ a linear application s.t $(T^7 + 2I)(T^2 + 3T + 2I)^2 = 0$ Find all possible Jordan forms and the relative characteristic polinomial . Thanks to anyone for the help.
 
Physics news on Phys.org
What did you try so far? And what do you know about the characteristic polynomial and its relation to eigenvalues?
 
Need to use $$ (display) or ## (in line) on both ends to bracket Latex expressions here.
 
  • Like
Likes jedishrfu
fresh_42 said:
What did you try so far? And what do you know about the characteristic polynomial and its relation to eigenvalues?
Thanks for your help . What stops me it's just the beginning. I don't know what the zeroes of T can help me? In general in class I saw how to build jordan form using given matrix. Thanks again
 
mathman said:
Need to use $$ (display) or ## (in line) on both ends to bracket Latex expressions here.
Thanks , next time i'll use them
 
Like this:
Let $$T : \mathbb{Q}^3 → \mathbb{Q}^3 $$ a linear application s.t $$(T^7 + 2I)(T^2 + 3T + 2I)^2 = 0$$

Easy to read questions get more traction. Seriously, it wasn't THAT hard to fix.
 
laurabon said:
Thanks for your help . What stops me it's just the beginning. I don't know what the zeroes of T can help me? In general in class I saw how to build jordan form using given matrix. Thanks again
You should start to factorize your equation. Does ##T^7-2## have rational roots? What are the roots of the other factor? This should tell you something about the eigenvalues.
 
fresh_42 said:
You should start to factorize your equation. Does ##T^7-2## have rational roots? What are the roots of the other factor? This should tell you something about the eigenvalues.
I think that I found the correct solution to this question . The possible minimal polynomials are $$(x+1)^a(x+2)^b$$ with any $$0≤a≤2, 0≤b≤2, 1≤a+b≤3$$​
now what about characteristic polynomial ?I only need this to find the jordan form am I right?​
 
laurabon said:
I think that I found the correct solution to this question . The possible minimal polynomials are $$(x+1)^a(x+2)^b$$ with any $$0≤a≤2, 0≤b≤2, 1≤a+b≤3$$​
now what about characteristic polynomial ?I only need this to find the jordan form am I right?​
Yes.

What you have is almost the minimal polynomial, and the minimal polynomial divides the characteristic polynomial. Now, what about the factor ##T^7+2I##? What do we know about it?
 

Similar threads

Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K