How can I integrate e^[a*sqrt(b^2+x^2)] * e^c*x?

  • Context: Graduate 
  • Thread starter Thread starter phys_student1
  • Start date Start date
  • Tags Tags
    Integrate
Click For Summary

Discussion Overview

The discussion revolves around the integration of the expression e^[a*sqrt(b^2+x^2)] * e^c*x. Participants explore various methods for solving the integral, including integration by parts and substitution techniques, while addressing the complexities involved in the integration process.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant attempts to integrate the expression by separating the components and using integration by parts, but finds it challenging due to the complexity of the exponent.
  • Another participant suggests taking constants out of the integral and proposes a substitution method, providing a detailed step-by-step approach.
  • Some participants clarify the interpretation of the constants in the integral, discussing whether they can be factored out based on their mathematical properties.
  • A later reply indicates that the integral cannot be expressed in terms of standard functions and suggests using numerical methods instead of analytical solutions.
  • There is a correction regarding the interpretation of the expression e^c*x, with a participant acknowledging a misunderstanding of exponent rules.

Areas of Agreement / Disagreement

Participants express differing views on the feasibility of solving the integral analytically, with some suggesting numerical methods while others attempt various analytical approaches. No consensus is reached on a definitive method or solution.

Contextual Notes

Participants note that the integral's complexity may depend on the specific forms of the constants and the variables involved, leading to unresolved mathematical steps and assumptions about the nature of the functions involved.

phys_student1
Messages
104
Reaction score
0
Integrate e^[a*sqrt(b^2+x^2)] * e^c*x

I can integrate the first part alone, i.e. ∫ea*√(b2+x2) and the result is [√(b2+x2)/a - 1/a2] ea*√(b2+x2).

For the full integral, i.e. ∫ea*√(b2+x2) * ec*x I tried using integration by parts but it does not work since the exponent of the first e is not simply x.

the second exponent was originally a cos but that is still much harder.

Any ideas?
 
Last edited:
Physics news on Phys.org
Strange, I changed the title but it looks like it did not.
 
It also helps to know with respect to which variable the integration is to be done.
 
SteamKing said:
It also helps to know with respect to which variable the integration is to be done.

wrt x.
 
Let's start by taking all of the constants out of the integral:

e^(a + c)INT[e^sqrt(b^2+x^2)*x,dx]

Now we need to expand out the x to "sqrt(b^2 + x^2)(x/sqrt(b^2 + x^2))". The reason for this will become apparent.

e^(a + c)INT[e^sqrt(b^2+x^2)*sqrt(b^2 + x^2)(x/sqrt(b^2 + x^2)),dx]

Now we use U substitution where:

u = sqrt(b^2 + x^2)
du/dx = x/sqrt(b^2 + x^2)

So:

e^(a + c)INT[ue^u,du]

Now we integrate by parts:

e^(a + c)(ue^u + INT[e^u,du])

And solve:

e^(a + c)(ue^u + e^u)

Simplify:

e^(a + c)((u + 1)e^u)
(u + 1)e^(u + a + c)

Un-substitute the u:

(sqrt(b^2 + x^2) + 1)e^(sqrt(b^2 + x^2) + a + c)

There may be simplifying to be done, but you should be able to manage that. Please check over my work to see if there is anything that looks wrong before trusting me, sometimes I confuse myself when I need to format things like this with my keyboard.
 
LastTimelord said:
Let's start by taking all of the constants out of the integral:

e^(a + c)INT[e^sqrt(b^2+x^2)*x,dx]

Now we need to expand out the x to "sqrt(b^2 + x^2)(x/sqrt(b^2 + x^2))". The reason for this will become apparent.

e^(a + c)INT[e^sqrt(b^2+x^2)*sqrt(b^2 + x^2)(x/sqrt(b^2 + x^2)),dx]

Now we use U substitution where:

u = sqrt(b^2 + x^2)
du/dx = x/sqrt(b^2 + x^2)

So:

e^(a + c)INT[ue^u,du]

Now we integrate by parts:

e^(a + c)(ue^u + INT[e^u,du])

And solve:

e^(a + c)(ue^u + e^u)

Simplify:

e^(a + c)((u + 1)e^u)
(u + 1)e^(u + a + c)

Un-substitute the u:

(sqrt(b^2 + x^2) + 1)e^(sqrt(b^2 + x^2) + a + c)

There may be simplifying to be done, but you should be able to manage that. Please check over my work to see if there is anything that looks wrong before trusting me, sometimes I confuse myself when I need to format things like this with my keyboard.

You cannot take e^c out. C is multiplied by the square root, not added. Same for e^a.
 
You can take out any coefficients. If it were added, it would need to have an x multiplied by it, but if the equation is a monomial, you can take any constant coefficients out of the integral, without affecting the answer.
 
Last edited:
see the difference:

2yp0sc2.gif
 
It's e^c*x, so it's logical to interpret it as "(e^c)*x", instead of what you seem to be doing: "e^(c*x), but I do now see what I did wrong: For some reason I forgot my exponent rules and thought "a^(bc) = (a^b)(a^c), when indeed it does not. Sorry, I may have been previously misunderstanding your point.

This is the correct solution:

INT[e^(a*sqrt(b^2+x^2)) * e^c*x,dx]

taking out constants, this time correctly:

(e^c)INT[e^(a*sqrt(b^2+x^2)) *x,dx]

Expanding x:

(e^c)INT[e^(a*sqrt(b^2+x^2))*(sqrt(b^2 + x^2)/a)*(ax/sqrt(b^2 + a^2)),dx]

U substitution:

u = a*sqrt(b^2+x^2)
u/a^2 = sqrt(b^2+x^2)/a
du/dx = ax/sqrt(b^2 + a^2)
du = ax/sqrt(b^2 + a^2)dx

(e^c)INT[e^(u)*(u/a^2),du]

Taking out constants:

(e^c)/(a^2)INT[u*e^(u),du]

Integration by parts:

(e^c)/(a^2)(ue^u + INT[e^u,du])

And evaluate the integral:

(e^c)/(a^2)(ue^u + e^u) + C

Un-substitute:

(e^c)/(a^2)((a*sqrt(b^2+x^2))e^(a*sqrt(b^2+x^2)) + e^(a*sqrt(b^2+x^2))) + C

Simplify:

(e^c)/(a^2)(a*sqrt(b^2+x^2) + 1)e^(a*sqrt(b^2+x^2)) + C

There may be more simplifying to do, but I won't get into that.
 
  • #10
Thank you but I want e to the power of c*x.

But anyway thank you indeed.
 
  • #11
Hi !
Integral of exp[a*sqrt(b^2+x^2)]*exp(c*x)*dx
this integral cannot be expressed in terms of a finite number of standard functions, but in terms of tough series of hyperbolic functions. See attachment.
The formal result will be so ardeous that I doubt that it could be useful for further calculus in practice.
So, I suggest to use numerical methods instead of analytical.
 

Attachments

  • Tough Integral.JPG
    Tough Integral.JPG
    33.7 KB · Views: 529
  • #12
JJacquelin said:
Hi !
Integral of exp[a*sqrt(b^2+x^2)]*exp(c*x)*dx
this integral cannot be expressed in terms of a finite number of standard functions, but in terms of tough series of hyperbolic functions. See attachment.
The formal result will be so ardeous that I doubt that it could be useful for further calculus in practice.
So, I suggest to use numerical methods instead of analytical.

Thanks indeed!

Yes I tried a lot but have not find any good result and you confirmed this. Thanks for your effort, I really appreciate your time! Thanks again.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K