MHB How can I prove the continuity of $f$ at $x = 1$?

Dustinsfl
Messages
2,217
Reaction score
5
Give a $\varepsilon-\delta$ proof that the function $f$ given by the formula $f(x) = x^2 + 3x - 3$ is continuous at $x = 1$.Given $\varepsilon > 0$.
There exist a $\delta > 0$ such that $|x - c| < \delta$ whenever $|f(x) - f(c)| < \varepsilon$.
From the statement of the $\varepsilon-\delta$ definition, we have that
$$
|x - 1| < \delta\quad\text{and}\quad |f(x) - f(1)| < \varepsilon.
$$
Let's look at $|f(x) - f(1)| = |x^2 + 3x - 4| < \varepsilon$.
Then
\begin{alignat*}{3}
|x^2 + 3x - 4| & = & |(x - 1)(x + 4)|\\
& = & (x + 4)|x - 1|
\end{alignat*}

What can I do about (x + 4)?
 
Physics news on Phys.org
dwsmith said:
Give a $\varepsilon-\delta$ proof that the function $f$ given by the formula $f(x) = x^2 + 3x - 3$ is continuous at $x = 1$.Given $\varepsilon > 0$.
There exist a $\delta > 0$ such that $|x - c| < \delta$ whenever $|f(x) - f(c)| < \varepsilon$.
From the statement of the $\varepsilon-\delta$ definition, we have that
$$
|x - 1| < \delta\quad\text{and}\quad |f(x) - f(1)| < \varepsilon.
$$
Let's look at $|f(x) - f(1)| = |x^2 + 3x - 4| < \varepsilon$.
Then
\begin{alignat*}{3}
|x^2 + 3x - 4| & = & |(x - 1)(x + 4)|\\
& = & (x + 4)|x - 1|
\end{alignat*}
What can I do about (x + 4)?
Start with $0<\delta <1$
\begin{align*}|x-1|&amp;&lt; 1\\ 0&lt;x &amp;&lt; 2 \\4&lt; x+4 &amp;&lt;6\\|x+4|&amp;&lt; 6\end{align*}.
 
Plato said:
Start with $0<\delta <1$
\begin{align*}|x-1|&amp;&lt; 1\\ 0&lt;x &amp;&lt; 2 \\4&lt; x+4 &amp;&lt;6\\|x+4|&amp;&lt; 6\end{align*}.

Do I have to consider for $\delta > 1$ next too?
 
dwsmith said:
Do I have to consider for $\delta > 1$ next too?
NO! You let $\delta = \min \left\{ {1,\frac{\varepsilon }{6}} \right\}$
 
Back
Top