MHB How can I prove the continuity of $f$ at $x = 1$?

Click For Summary
To prove the continuity of the function f(x) = x^2 + 3x - 3 at x = 1 using the ε-δ definition, it is necessary to show that for every ε > 0, there exists a δ > 0 such that if |x - 1| < δ, then |f(x) - f(1)| < ε. The expression |f(x) - f(1)| simplifies to |(x - 1)(x + 4)|, which can be bounded by controlling |x + 4|. By choosing δ < 1, it can be established that |x + 4| < 6, leading to the conclusion that |(x - 1)(x + 4)| < 6|x - 1|. Finally, setting δ = min{1, ε/6} ensures that the continuity condition is satisfied.
Dustinsfl
Messages
2,217
Reaction score
5
Give a $\varepsilon-\delta$ proof that the function $f$ given by the formula $f(x) = x^2 + 3x - 3$ is continuous at $x = 1$.Given $\varepsilon > 0$.
There exist a $\delta > 0$ such that $|x - c| < \delta$ whenever $|f(x) - f(c)| < \varepsilon$.
From the statement of the $\varepsilon-\delta$ definition, we have that
$$
|x - 1| < \delta\quad\text{and}\quad |f(x) - f(1)| < \varepsilon.
$$
Let's look at $|f(x) - f(1)| = |x^2 + 3x - 4| < \varepsilon$.
Then
\begin{alignat*}{3}
|x^2 + 3x - 4| & = & |(x - 1)(x + 4)|\\
& = & (x + 4)|x - 1|
\end{alignat*}

What can I do about (x + 4)?
 
Physics news on Phys.org
dwsmith said:
Give a $\varepsilon-\delta$ proof that the function $f$ given by the formula $f(x) = x^2 + 3x - 3$ is continuous at $x = 1$.Given $\varepsilon > 0$.
There exist a $\delta > 0$ such that $|x - c| < \delta$ whenever $|f(x) - f(c)| < \varepsilon$.
From the statement of the $\varepsilon-\delta$ definition, we have that
$$
|x - 1| < \delta\quad\text{and}\quad |f(x) - f(1)| < \varepsilon.
$$
Let's look at $|f(x) - f(1)| = |x^2 + 3x - 4| < \varepsilon$.
Then
\begin{alignat*}{3}
|x^2 + 3x - 4| & = & |(x - 1)(x + 4)|\\
& = & (x + 4)|x - 1|
\end{alignat*}
What can I do about (x + 4)?
Start with $0<\delta <1$
\begin{align*}|x-1|&amp;&lt; 1\\ 0&lt;x &amp;&lt; 2 \\4&lt; x+4 &amp;&lt;6\\|x+4|&amp;&lt; 6\end{align*}.
 
Plato said:
Start with $0<\delta <1$
\begin{align*}|x-1|&amp;&lt; 1\\ 0&lt;x &amp;&lt; 2 \\4&lt; x+4 &amp;&lt;6\\|x+4|&amp;&lt; 6\end{align*}.

Do I have to consider for $\delta > 1$ next too?
 
dwsmith said:
Do I have to consider for $\delta > 1$ next too?
NO! You let $\delta = \min \left\{ {1,\frac{\varepsilon }{6}} \right\}$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K