MHB How can I prove the rank of a matrix with a specific pattern of entries?

  • Thread starter Thread starter A.Magnus
  • Start date Start date
  • Tags Tags
    Matrix rank
A.Magnus
Messages
138
Reaction score
0
I would love to get help on this problem: Suppose that $M$ is a square $k \times k$ matrix with entries of 1's in the main diagonal and entries of $\frac{1}{k}$ for all others. Show that the rank of $M$ is $k$.

I think I should go about by contradiction, that is, by assuming that the column vectors are not linearly independent. Since there are $k$ number of column vectors, then hopefully I can show that the rank of $M$ is indeed $k$. Unfortunately I don't know how to put these ideas down in writing; your time and gracious helps are therefore very much appreciated. Thank you - MA
 
Last edited:
Physics news on Phys.org
MaryAnn said:
I would love to get help on this problem: Suppose that $M$ is a square $k \times k$ matrix with entries of 1's in the main diagonal and entries of $\frac{1}{k}$ for all others. Show that the rank of $M$ is $k$.

I think I should go about by contradiction, that is, by assuming that the column vectors are not linearly independent. Since there are $k$ number of column vectors, then hopefully I can show that the rank of $M$ is indeed $k$. Unfortunately I don't know how to put these ideas down in writing; your time and gracious helps are therefore very much appreciated. Thank you.

Hi MaryAnn! Welcome to MHB! ;)

Suppose we add all column vectors together and divide by $1+\frac{k-1}k$, then we get:
$$\begin{bmatrix}1\\ 1\\ \vdots \\ 1\end{bmatrix}$$
Now subtract $k$ times the first column vector:
$$\begin{bmatrix}1\\ 1\\ \vdots \\ 1\end{bmatrix}
- k\begin{bmatrix}1\\ 1/k\\ \vdots \\ 1/k\end{bmatrix}
=\begin{bmatrix}1-k\\ 0\\ \vdots \\ 0\end{bmatrix}
$$
Hey! That's a multiple of a standard unit vector!
Moreover, we can get each unit vector from a linear combination of the column vectors.
Therefore the column vectors are independent.
 
I like Serena said:
Hi MaryAnn! Welcome to MHB! ;)

Suppose we add all column vectors together and divide by $1+\frac{k-1}k$, then we get:
$$\begin{bmatrix}1\\ 1\\ \vdots \\ 1\end{bmatrix}$$
Now subtract $k$ times the first column vector:
$$\begin{bmatrix}1\\ 1\\ \vdots \\ 1\end{bmatrix}
- k\begin{bmatrix}1\\ 1/k\\ \vdots \\ 1/k\end{bmatrix}
=\begin{bmatrix}1-k\\ 0\\ \vdots \\ 0\end{bmatrix}
$$
Hey! That's a multiple of a standard unit vector!
Moreover, we can get each unit vector from a linear combination of the column vectors.
Therefore the column vectors are independent.

Thank you for your gracious help! This is more than just a genius' solution. - MA
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top