How can I prove the rank of a matrix with a specific pattern of entries?

  • Context: MHB 
  • Thread starter Thread starter A.Magnus
  • Start date Start date
  • Tags Tags
    Matrix rank
Click For Summary
SUMMARY

The discussion centers on proving that the rank of a square matrix \( M \) of size \( k \times k \), with 1's on the main diagonal and \( \frac{1}{k} \) elsewhere, is \( k \). The approach involves demonstrating the linear independence of the column vectors through a contradiction method. By summing the column vectors and manipulating them, the conclusion is reached that the column vectors can generate standard unit vectors, confirming their independence and thus establishing the rank as \( k \).

PREREQUISITES
  • Understanding of linear algebra concepts, particularly matrix rank
  • Familiarity with vector spaces and linear independence
  • Knowledge of matrix operations and manipulations
  • Basic proficiency in mathematical proofs, especially proof by contradiction
NEXT STEPS
  • Study the properties of matrix rank in linear algebra
  • Learn about linear independence and dependence of vectors
  • Explore proof techniques in mathematics, focusing on proof by contradiction
  • Investigate specific types of matrices and their ranks, such as diagonal and symmetric matrices
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators looking for examples of matrix rank proofs.

A.Magnus
Messages
138
Reaction score
0
I would love to get help on this problem: Suppose that $M$ is a square $k \times k$ matrix with entries of 1's in the main diagonal and entries of $\frac{1}{k}$ for all others. Show that the rank of $M$ is $k$.

I think I should go about by contradiction, that is, by assuming that the column vectors are not linearly independent. Since there are $k$ number of column vectors, then hopefully I can show that the rank of $M$ is indeed $k$. Unfortunately I don't know how to put these ideas down in writing; your time and gracious helps are therefore very much appreciated. Thank you - MA
 
Last edited:
Physics news on Phys.org
MaryAnn said:
I would love to get help on this problem: Suppose that $M$ is a square $k \times k$ matrix with entries of 1's in the main diagonal and entries of $\frac{1}{k}$ for all others. Show that the rank of $M$ is $k$.

I think I should go about by contradiction, that is, by assuming that the column vectors are not linearly independent. Since there are $k$ number of column vectors, then hopefully I can show that the rank of $M$ is indeed $k$. Unfortunately I don't know how to put these ideas down in writing; your time and gracious helps are therefore very much appreciated. Thank you.

Hi MaryAnn! Welcome to MHB! ;)

Suppose we add all column vectors together and divide by $1+\frac{k-1}k$, then we get:
$$\begin{bmatrix}1\\ 1\\ \vdots \\ 1\end{bmatrix}$$
Now subtract $k$ times the first column vector:
$$\begin{bmatrix}1\\ 1\\ \vdots \\ 1\end{bmatrix}
- k\begin{bmatrix}1\\ 1/k\\ \vdots \\ 1/k\end{bmatrix}
=\begin{bmatrix}1-k\\ 0\\ \vdots \\ 0\end{bmatrix}
$$
Hey! That's a multiple of a standard unit vector!
Moreover, we can get each unit vector from a linear combination of the column vectors.
Therefore the column vectors are independent.
 
I like Serena said:
Hi MaryAnn! Welcome to MHB! ;)

Suppose we add all column vectors together and divide by $1+\frac{k-1}k$, then we get:
$$\begin{bmatrix}1\\ 1\\ \vdots \\ 1\end{bmatrix}$$
Now subtract $k$ times the first column vector:
$$\begin{bmatrix}1\\ 1\\ \vdots \\ 1\end{bmatrix}
- k\begin{bmatrix}1\\ 1/k\\ \vdots \\ 1/k\end{bmatrix}
=\begin{bmatrix}1-k\\ 0\\ \vdots \\ 0\end{bmatrix}
$$
Hey! That's a multiple of a standard unit vector!
Moreover, we can get each unit vector from a linear combination of the column vectors.
Therefore the column vectors are independent.

Thank you for your gracious help! This is more than just a genius' solution. - MA
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K