MHB How can I show that K is positive-definite?

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
To show that the matrix K is positive-definite in the context of the Cholesky decomposition, it is established that K can be derived from the expression K = H - (1/d)uu^T, where H is a symmetric matrix. The matrix P, defined as P = [sqrt(d) 0; (1/sqrt(d))u I(n-1)], is invertible since its determinant is the product of its diagonal entries. Given that A is positive definite, the matrix [1 0; 0 K] can be expressed as P^(-1)A(P^(-1))* and must also be positive definite. Consequently, since K is a submatrix of this positive definite matrix, it follows that K is positive definite as well.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! :)

I have also an other question about the proof of the Cholesky decomposition.
We write A like that:
$A=\begin{bmatrix}
d & u^{T}\\
u & H
\end{bmatrix}=\begin{bmatrix}
\sqrt d & 0\\
\frac{u}{\sqrt d} & I_{n-1}
\end{bmatrix}\begin{bmatrix}
1 & 0\\
0 & K
\end{bmatrix}\begin{bmatrix}
\sqrt d & \frac{u^{T}}{\sqrt{d}}\\
0 & I_{n-1}
\end{bmatrix}$

where $K=H-\frac{1}{d}uu^{T}$

and then we suppose that $K$ is symmetric and positive-definite,to use the assumption step(that is valid for $(n-1)x(n-1)$ symmetric and positive-definite matrices.
But...then I have to prove that $K$ is positive-definite.How can I do this?
 
Mathematics news on Phys.org
evinda said:
Hi! :)

I have also an other question about the proof of the Cholesky decomposition.
We write A like that:
$A=\begin{bmatrix}
d & u^{T}\\
u & H
\end{bmatrix}=\begin{bmatrix}
\sqrt d & 0\\
\frac{u}{\sqrt d} & I_{n-1}
\end{bmatrix}\begin{bmatrix}
1 & 0\\
0 & K
\end{bmatrix}\begin{bmatrix}
\sqrt d & \frac{u^{T}}{\sqrt{d}}\\
0 & I_{n-1}
\end{bmatrix}$

where $K=H-\frac{1}{d}uu^{T}$

and then we suppose that $K$ is symmetric and positive-definite,to use the assumption step(that is valid for $(n-1)x(n-1)$ symmetric and positive-definite matrices.
But...then I have to prove that $K$ is positive-definite.How can I do this?

Do I have to use the condition $x^{T}Ax>0$ ?
 
evinda said:
Hi! :)

I have also an other question about the proof of the Cholesky decomposition.
We write A like that:
$A=\begin{bmatrix}
d & u^{T}\\
u & H
\end{bmatrix}=\begin{bmatrix}
\sqrt d & 0\\
\frac{u}{\sqrt d} & I_{n-1}
\end{bmatrix}\begin{bmatrix}
1 & 0\\
0 & K
\end{bmatrix}\begin{bmatrix}
\sqrt d & \frac{u^{T}}{\sqrt{d}}\\
0 & I_{n-1}
\end{bmatrix}$

where $K=H-\frac{1}{d}uu^{T}$

and then we suppose that $K$ is symmetric and positive-definite,to use the assumption step(that is valid for $(n-1)x(n-1)$ symmetric and positive-definite matrices.
But...then I have to prove that $K$ is positive-definite.How can I do this?
The matrix $P = \begin{bmatrix} \sqrt d & 0\\ \frac1{\sqrt d}u & I_{n-1} \end{bmatrix}$ is invertible, because its determinant is the product of its diagonal entries, namely $\sqrt d.$ But $A = P \begin{bmatrix} 1 & 0\\ 0 & K \end{bmatrix}P^*,$ and $A$ is positive definite. Therefore $\begin{bmatrix} 1 & 0\\ 0 & K \end{bmatrix} = P^{-1}A(P^{-1})^*$ is positive definite. Hence $K$, which is a corner of that matrix, is also positive definite.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
810
  • · Replies 36 ·
2
Replies
36
Views
7K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K