MHB How can I show that K is positive-definite?

  • Thread starter Thread starter evinda
  • Start date Start date
AI Thread Summary
To show that the matrix K is positive-definite in the context of the Cholesky decomposition, it is established that K can be derived from the expression K = H - (1/d)uu^T, where H is a symmetric matrix. The matrix P, defined as P = [sqrt(d) 0; (1/sqrt(d))u I(n-1)], is invertible since its determinant is the product of its diagonal entries. Given that A is positive definite, the matrix [1 0; 0 K] can be expressed as P^(-1)A(P^(-1))* and must also be positive definite. Consequently, since K is a submatrix of this positive definite matrix, it follows that K is positive definite as well.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! :)

I have also an other question about the proof of the Cholesky decomposition.
We write A like that:
$A=\begin{bmatrix}
d & u^{T}\\
u & H
\end{bmatrix}=\begin{bmatrix}
\sqrt d & 0\\
\frac{u}{\sqrt d} & I_{n-1}
\end{bmatrix}\begin{bmatrix}
1 & 0\\
0 & K
\end{bmatrix}\begin{bmatrix}
\sqrt d & \frac{u^{T}}{\sqrt{d}}\\
0 & I_{n-1}
\end{bmatrix}$

where $K=H-\frac{1}{d}uu^{T}$

and then we suppose that $K$ is symmetric and positive-definite,to use the assumption step(that is valid for $(n-1)x(n-1)$ symmetric and positive-definite matrices.
But...then I have to prove that $K$ is positive-definite.How can I do this?
 
Mathematics news on Phys.org
evinda said:
Hi! :)

I have also an other question about the proof of the Cholesky decomposition.
We write A like that:
$A=\begin{bmatrix}
d & u^{T}\\
u & H
\end{bmatrix}=\begin{bmatrix}
\sqrt d & 0\\
\frac{u}{\sqrt d} & I_{n-1}
\end{bmatrix}\begin{bmatrix}
1 & 0\\
0 & K
\end{bmatrix}\begin{bmatrix}
\sqrt d & \frac{u^{T}}{\sqrt{d}}\\
0 & I_{n-1}
\end{bmatrix}$

where $K=H-\frac{1}{d}uu^{T}$

and then we suppose that $K$ is symmetric and positive-definite,to use the assumption step(that is valid for $(n-1)x(n-1)$ symmetric and positive-definite matrices.
But...then I have to prove that $K$ is positive-definite.How can I do this?

Do I have to use the condition $x^{T}Ax>0$ ?
 
evinda said:
Hi! :)

I have also an other question about the proof of the Cholesky decomposition.
We write A like that:
$A=\begin{bmatrix}
d & u^{T}\\
u & H
\end{bmatrix}=\begin{bmatrix}
\sqrt d & 0\\
\frac{u}{\sqrt d} & I_{n-1}
\end{bmatrix}\begin{bmatrix}
1 & 0\\
0 & K
\end{bmatrix}\begin{bmatrix}
\sqrt d & \frac{u^{T}}{\sqrt{d}}\\
0 & I_{n-1}
\end{bmatrix}$

where $K=H-\frac{1}{d}uu^{T}$

and then we suppose that $K$ is symmetric and positive-definite,to use the assumption step(that is valid for $(n-1)x(n-1)$ symmetric and positive-definite matrices.
But...then I have to prove that $K$ is positive-definite.How can I do this?
The matrix $P = \begin{bmatrix} \sqrt d & 0\\ \frac1{\sqrt d}u & I_{n-1} \end{bmatrix}$ is invertible, because its determinant is the product of its diagonal entries, namely $\sqrt d.$ But $A = P \begin{bmatrix} 1 & 0\\ 0 & K \end{bmatrix}P^*,$ and $A$ is positive definite. Therefore $\begin{bmatrix} 1 & 0\\ 0 & K \end{bmatrix} = P^{-1}A(P^{-1})^*$ is positive definite. Hence $K$, which is a corner of that matrix, is also positive definite.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top