MHB How can I simplify this limit to infinity problem?

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Infinity Limit
tmt1
Messages
230
Reaction score
0
I have this problem

$$\lim_{{x}\to{\infty}} \frac{2x + 1}{ \sqrt{x^2 + 2x + 1} + x}$$

How do I get from there to this step?

$$\lim_{{x}\to{\infty}} \frac{2x}{ \sqrt{x^2 } + x}$$

From the last step I can calculate them limit as 1.
 
Mathematics news on Phys.org
tmt said:
I have this problem

$$\lim_{{x}\to{\infty}} \frac{2x + 1}{ \sqrt{x^2 + 2x + 1} + x}$$

How do I get from there to this step?

$$\lim_{{x}\to{\infty}} \frac{2x}{ \sqrt{x^2 } + x}$$

You CAN'T! These things are not equal!

First notice that since we are approaching infinity, x is clearly positive, so we can treat $\displaystyle \begin{align*} \sqrt{x^2} = x \end{align*}$.

$\displaystyle \begin{align*} \frac{2x + 1}{\sqrt{ x^2 + 2x + 1 } + x } &= \frac{\frac{2x+1}{x}}{\frac{\sqrt{x^2 + 2x + 1} + x}{x}} \\ &= \frac{2 + \frac{1}{x}}{\frac{\sqrt{x^2 + 2x + 1}}{\sqrt{x^2}} + \frac{x}{x} } \\ &= \frac{ 2 + \frac{1}{x}}{ \sqrt{ 1 + \frac{2}{x} + \frac{1}{x^2}} + 1 } \end{align*}$

Now what happens as $\displaystyle \begin{align*} x \to \infty \end{align*}$?
 
Prove It said:
You CAN'T! These things are not equal!

First notice that since we are approaching infinity, x is clearly positive, so we can treat $\displaystyle \begin{align*} \sqrt{x^2} = x \end{align*}$.

$\displaystyle \begin{align*} \frac{2x + 1}{\sqrt{ x^2 + 2x + 1 } + x } &= \frac{\frac{2x+1}{x}}{\frac{\sqrt{x^2 + 2x + 1} + x}{x}} \\ &= \frac{2 + \frac{1}{x}}{\frac{\sqrt{x^2 + 2x + 1}}{\sqrt{x^2}} + \frac{x}{x} } \\ &= \frac{ 2 + \frac{1}{x}}{ \sqrt{ 1 + \frac{2}{x} + \frac{1}{x^2}} + 1 } \end{align*}$

Now what happens as $\displaystyle \begin{align*} x \to \infty \end{align*}$?

I understand this problem even less than I thought I did so now I am a bit unprepared. Is it:

$$\frac{2}{\sqrt{1} + 1}$$
 
What Prove It is doing is showing you how you have to manipulate expressions in order to find limits. It looks weird at first but there is a reason to doing so.

For example look at this to start with: $$\frac{2x+1}{\sqrt{x^2+2x+1}+x}$$

Just for the heck of it, let's pull out an $x^2$ from the terms under the square-root.

$$\sqrt{x^2+2x+1}=\sqrt{x^2 \left(1+\frac{2}{x}+\frac{1}{x^2} \right)}$$

Why do this you might ask? Well it comes down to something similar to the last thread you made. Those two fractions we now have are going to drop off to $0$ as $x \rightarrow \infty$, leaving us with just $\sqrt{x^2}$. This is a technique you are going to have to use when working with limits at infinity to try to cancel some things and simplify some terms.

Does that help some?
 
tmt said:
I have this problem

$$\lim_{{x}\to{\infty}} \frac{2x + 1}{ \sqrt{x^2 + 2x + 1} + x}$$

...

Good morning,

your problem gives me the opportunity to show off - thanks:

$$\lim_{{x}\to{\infty}} \frac{2x + 1}{ \sqrt{x^2 + 2x + 1} + x} = \lim_{{x}\to{\infty}} \frac{2x + 1}{ \sqrt{(x+1)^2} + x} = \lim_{{x}\to{\infty}} \frac{2x + 1}{ x+1 + x} = \lim_{{x}\to{\infty}}( 1)$$

But be careful: This is not the general way to calculate limits!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top