MHB How can I solve a non-homogeneous equation using substitution?

Joe20
Messages
53
Reaction score
1
Hi, I have attached part of my steps for solving the homogeneous equation.
The equation is proven to be homogeneous. However after using substitution of y=zx and its' derivative, I was not able to separate the variables conveniently as shown. Please advise. Thank you!
 

Attachments

  • 11.png
    11.png
    15.2 KB · Views: 120
Physics news on Phys.org
The difficulty is that this equation is NOT homogenous because of the "+ 1" and "-1" terms.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top