How can I solve this integral involving cube roots?

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Cube Integral Root
Click For Summary
SUMMARY

The integral \(\int \frac{\sqrt[3]{x}}{(\sqrt[3]{x}+1)^{5}} \, dx\) can be solved using the substitution \(u=\sqrt[3]{x}+1\). This transforms the integral into \(3\int \frac{(u-1)^{3}}{u^{5}} \, du\). The integration process involves breaking down the expression into simpler terms: \(3\int (u^{-2} - 3u^{-3} + 3u^{-4} - u^{-5}) \, du\). The final result can be obtained by integrating each term separately, leading to a complete solution.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of algebraic manipulation of expressions
  • Experience with cube roots and their properties
NEXT STEPS
  • Study advanced integration techniques, focusing on substitution methods
  • Learn about integration of rational functions
  • Explore the use of computer algebra systems like Wolfram Alpha and Maple for verification
  • Practice solving integrals involving roots and powers
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus or preparing for exams involving integration techniques. This discussion is also beneficial for educators looking for examples of substitution in integrals.

Yankel
Messages
390
Reaction score
0
Hello

I am working on this integral

\[\int \frac{\sqrt[3]{x}}{(\sqrt[3]{x}+1)^{5}}\]I have tried using a substitution, I did:

\[u=\sqrt[3]{x}+1\]

and I got that the integral becomes:

\[3\cdot \int \frac{(u-1)(u-1^{2})}{u^{5}}du\]I moved on from there, got a result, however it was not identical to the one wolfrm alpha or maple got...I am stuck... :confused:
 
Physics news on Phys.org
Well, if $u=\sqrt[3]{x}+1$, then $u-1=\sqrt[3]{x}$, and $du=(1/3)x^{-2/3}\,dx$, or $3(x^{2/3}) \, du= dx$, and hence $3(u-1)^{2} \, du=dx$. The integral becomes
$$\int \frac{\sqrt[3]{x}}{(\sqrt[3]{x}+1)^{5}} \, dx= \int \frac{3(u-1)^{3}}{u^{5}} \, du.$$
Perhaps you have the square in the wrong place?
 
Yankel said:
Hello

I am working on this integral

\[\int \frac{\sqrt[3]{x}}{(\sqrt[3]{x}+1)^{5}}\]I have tried using a substitution, I did:

\[u=\sqrt[3]{x}+1\]

and I got that the integral becomes:

\[3\cdot \int \frac{(u-1)(u-1^{2})}{u^{5}}du\]I moved on from there, got a result, however it was not identical to the one wolfrm alpha or maple got...I am stuck... :confused:

\displaystyle \begin{align*} \int{ \frac{\sqrt[3]{x}}{\left( \sqrt[3]{x} + 1 \right) ^5} \, dx} &= \int{\frac{3\left( \sqrt[3]{x} \right) ^2 \, \sqrt[3]{x} }{3 \left( \sqrt[3]{x} \right) ^2 \left( \sqrt[3]{x} + 1 \right) ^5 } \, dx} \\ &= 3\int{ \left[ \frac{x}{ \left( \sqrt[3]{x} + 1 \right) ^5 } \right] \, \left[ \frac{1}{3 \left( \sqrt[3]{x} \right) ^2 } \right] \, dx} \end{align*}

Now let \displaystyle \begin{align*} u = \sqrt[3]{x} + 1 = x^{\frac{1}{3}} + 1 \implies \frac{du}{dx} = \frac{1}{3}x^{-\frac{2}{3}} \implies du = \frac{1}{3\left( \sqrt[3]{x} \right) ^2 } \, dx \end{align*} and the integral becomes

\displaystyle \begin{align*} 3\int{ \left[ \frac{x}{ \left( \sqrt[3]{x} + 1 \right) ^5} \right] \, \left[ \frac{1}{3 \left( \sqrt[3]{x} \right) ^2} \right] \, dx} &= 3\int{ \frac{(u - 1)^3}{u^5} \, du } \\ &= 3 \int{ \frac{u^3 - 3u^2 + 3u - 1}{u^5} \, du} \\ &= 3\int{ u^{-2 }- 3u^{-3} + 3u^{-4} - u^{-5} \, du} \end{align*}

You should be able to integrate this now :)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K