MHB How can I solve this LaPlace Transform using Laplace Transforms?

shamieh
Messages
538
Reaction score
0
Solve by Laplace Transforms.

So I'm stuck on how to find this $$\mathcal{L}^{-1}$$ $( \frac{\frac{5s}{4} + \frac{13}{4}}{s^2+5s+8} ) $

I'm not sure what t odo. I was thinking I need to use the $\cos(at)$ and $\sin(at)$ formulas but I'm not sure... Any help would be great
 
Physics news on Phys.org
nvm, i was doing something wrong
 
shamieh said:
Solve by Laplace Transforms.

So I'm stuck on how to find this $$\mathcal{L}^{-1}$$ $( \frac{\frac{5s}{4} + \frac{13}{4}}{s^2+5s+8} ) $

I'm not sure what t odo. I was thinking I need to use the $\cos(at)$ and $\sin(at)$ formulas but I'm not sure... Any help would be great

$\displaystyle \begin{align*} \frac{\frac{5s}{4} + \frac{13}{4}}{s^2 + 5s + 8} &= \frac{1}{4} \left( \frac{5s + 13}{s^2 + 5s + 8} \right) \\ &= \frac{1}{4} \left[ \frac{5s + 13}{s^2 + 5s + \left( \frac{5}{2} \right) ^2 - \left( \frac{5}{2} \right) ^2 + 8} \right] \\ &= \frac{1}{4} \left[ \frac{5s + 13}{ \left( s + \frac{5}{2} \right) ^2 + \frac{7}{4} } \right] \\ &= \frac{1}{4} \left[ \frac{5 \left( s + \frac{5}{2} \right) + \frac{1}{2}}{\left( s + \frac{5}{2} \right) ^2 + \left( \frac{\sqrt{7}}{2} \right) ^2} \right] \end{align*}$

This is now in a form where you can apply a shift, and then take the transform.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...

Similar threads

Replies
7
Views
5K
Replies
17
Views
3K
Replies
1
Views
3K
Replies
2
Views
2K
Replies
1
Views
4K
Replies
1
Views
1K
Replies
5
Views
3K
Replies
1
Views
1K
Back
Top