MHB How can I solve this LaPlace Transform using Laplace Transforms?

shamieh
Messages
538
Reaction score
0
Solve by Laplace Transforms.

So I'm stuck on how to find this $$\mathcal{L}^{-1}$$ $( \frac{\frac{5s}{4} + \frac{13}{4}}{s^2+5s+8} ) $

I'm not sure what t odo. I was thinking I need to use the $\cos(at)$ and $\sin(at)$ formulas but I'm not sure... Any help would be great
 
Physics news on Phys.org
nvm, i was doing something wrong
 
shamieh said:
Solve by Laplace Transforms.

So I'm stuck on how to find this $$\mathcal{L}^{-1}$$ $( \frac{\frac{5s}{4} + \frac{13}{4}}{s^2+5s+8} ) $

I'm not sure what t odo. I was thinking I need to use the $\cos(at)$ and $\sin(at)$ formulas but I'm not sure... Any help would be great

$\displaystyle \begin{align*} \frac{\frac{5s}{4} + \frac{13}{4}}{s^2 + 5s + 8} &= \frac{1}{4} \left( \frac{5s + 13}{s^2 + 5s + 8} \right) \\ &= \frac{1}{4} \left[ \frac{5s + 13}{s^2 + 5s + \left( \frac{5}{2} \right) ^2 - \left( \frac{5}{2} \right) ^2 + 8} \right] \\ &= \frac{1}{4} \left[ \frac{5s + 13}{ \left( s + \frac{5}{2} \right) ^2 + \frac{7}{4} } \right] \\ &= \frac{1}{4} \left[ \frac{5 \left( s + \frac{5}{2} \right) + \frac{1}{2}}{\left( s + \frac{5}{2} \right) ^2 + \left( \frac{\sqrt{7}}{2} \right) ^2} \right] \end{align*}$

This is now in a form where you can apply a shift, and then take the transform.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Replies
7
Views
5K
Replies
17
Views
3K
Replies
1
Views
3K
Replies
2
Views
2K
Replies
1
Views
4K
Replies
1
Views
1K
Replies
5
Views
3K
Replies
1
Views
1K
Back
Top