I How can I test for positive semi-definiteness in matrices?

Trollfaz
Messages
143
Reaction score
14
On a side note I'm posting on PF more frequently as I have exams coming and I need some help to understand some concepts. After my exams I will probably go inactive for a while.
So I'll get to the point. Suppose we have a matrix A and I wish to check if it is positive semi definite. So one easy way is to see if all it's eigenvalues are ##\ge 0##.
Another way is to test using the definition of PSD
$$v^T Av\ge 0\ v \in R^n$$
But sometimes things get really messy when I try to test a matrix with arbitrary parameters say I'm testing ##\triangledown ^2 f(x)## for PSD to check if f(x) is convex. Is there any other ways to prove for PSD in a matrix
 
Last edited by a moderator:
Physics news on Phys.org
Do you have a specific example of a problem you're stuck trying to solve? I don't think there's any general principle beyond what you listed but an example might spark some specific insight or just help demonstrate how to use the definition to check.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
33
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
10K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
19K
  • · Replies 12 ·
Replies
12
Views
2K