MHB How can I use integration by parts to solve $\displaystyle \int\sin^2(x) \ dx$?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The discussion centers on solving the integral of sin²(x) using integration by parts. Participants explore the integration process, noting that the initial steps involve setting u = sin(x) and dv = sin(x) dx, leading to a recursive integral that includes cos²(x). The conversation highlights the importance of recognizing that further integration by parts is necessary for cos²(x) as well. Ultimately, the correct solution is derived as (1/2)(x - sin(x)cos(x)) + C, confirming the connection to the standard result of (x/2 - sin(2x)/4 + C). The thread emphasizes the value of understanding the derivation rather than relying solely on table references.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
mnt{w.8.4.5} nmh{1000}
$\displaystyle \int\sin^2 \left({x}\right) \ dx
= \frac{x}{2}-\frac{\sin\left({2x }\right)}{4}+C $
As given by a table reference
Integral calculator uses reduction formula to solve this
But this is an exercise following integration by parts so..
$\displaystyle \int\sin^2 \left({x}\right) \ dx
\implies \int\sin\left({x}\right) \sin\left({x}\right) \ dx $
$\displaystyle u=\sin\left({x}\right) $ $dv=\sin\left({x}\right)\ dx$
$du=-\cos\left({x}\right) \ dx $ $v=\cos\left({x}\right)$
$\displaystyle uv-\int v \ du$
$\displaystyle \sin\left({x}\right)\cos\left({x}\right)
+ \int\cos\left({x}\right)\cos\left({x}\right) \ dx $
Got stuck here
 
Last edited:
Physics news on Phys.org
karush said:
Whitman 8.4.5
$\displaystyle \int\sin^2 \left({x}\right) \ dx
= \frac{x}{2}-\frac{\sin\left({2x }\right)}{4}+C $
As given by a table reference
Integral calculator uses reduction formula to solve this
But this is an exercise following integration by parts so..
$\displaystyle \int\sin^2 \left({x}\right) \ dx
\implies \int\sin\left({x}\right) \sin\left({x}\right) \ dx $
$\displaystyle u=\sin\left({x}\right) $ $dv=\sin\left({x}\right)\ dx$
$du=-\cos\left({x}\right) \ dx $ $v=\cos\left({x}\right)$
$\displaystyle uv-\int v \ du$
$\displaystyle \sin\left({x}\right)\cos\left({x}\right)
+ \int\cos\left({x}\right)\cos\left({x}\right) \ dx $
Got stuck here

I don't know why you always stop at this step. It's pretty obvious that you still have an integration to do, and since you were using integration by parts for sin^2(x), wouldn't it make sense that you would have to use integration by parts for cos^2(x) as well?
 
karush said:
Whitman 8.4.5
$\displaystyle \int\sin^2 \left({x}\right) \ dx
= \frac{x}{2}-\frac{\sin\left({2x }\right)}{4}+C $
As given by a table reference
Integral calculator uses reduction formula to solve this
But this is an exercise following integration by parts so..
$\displaystyle \int\sin^2 \left({x}\right) \ dx
\implies \int\sin\left({x}\right) \sin\left({x}\right) \ dx $
$\displaystyle u=\sin\left({x}\right) $ $dv=\sin\left({x}\right)\ dx$
$du=-\cos\left({x}\right) \ dx $ $v=\cos\left({x}\right)$
$\displaystyle uv-\int v \ du$
$\displaystyle \sin\left({x}\right)\cos\left({x}\right)
+ \int\cos\left({x}\right)\cos\left({x}\right) \ dx $
Got stuck here
Your work is a little off . . .

I \;=\;\int\sin^2x\,dx \;=\;\int\underbrace{\sin x}_u\,\underbrace{\sin x\,dx}_{dv}

\begin{array}{ccc}u \:=\:\sin x && dv \:=\:\sin x\,dx \\ du \:=\:\cos x\,dx && v \:=\:-\cos x \end{array}

I \;=\;\underbrace{(\sin x)}_u \underbrace{(-\cos x)}_v - \int\underbrace{(-\cos x)}<br /> _v\underbrace{(\cos x\,dx)}_{du} \;=\; -\sin x\cos x + \int\cos^2x\,dx

I \;=\; -\sin x\cos x + \int(1 -\sin^2x\,dx)\,dx \;=\;-\sin x\cos x + \int dx - \underbrace{\int\sin^2x\,dx}_{\text{This is }I}

I \;=\;-\sin\cos x + x - I \quad\Rightarrow\quad 2I \;=\;x -\sin x\cos x +C

I \;=\;\frac{1}{2}(x - \sin x\cos x) + C

 
$$\int\sin^2(x)\,dx$$

$$dv=1,v=x$$

$$u=\sin^2(x),du=\sin(2x)\,dx$$

$$\int\sin^2(x)\,dx=x\sin^2(x)-\int x\sin(2x)\,dx$$

IBP (again) with $u=x,dv=\sin(2x)$:

$$\int\sin^2(x)\,dx=x\sin^2(x)-\left(-x\dfrac{\cos(2x)}{2}+\dfrac12\int\cos(2x)\,dx\right)$$

$$=x\sin^2(x)+x\dfrac{\cos(2x)}{2}-\dfrac{\sin(2x)}{4}+C=\dfrac x2-\dfrac{\sin(2x)}{4}+C$$
 
Thanks everyone sorry my latex didn't render to good in the preview it was fine. I'm too used to just looking things up in the tables not knowing how it was derived the book just had examples of odd powers.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K