MHB How can I use integration by parts to solve $\displaystyle \int\sin^2(x) \ dx$?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
mnt{w.8.4.5} nmh{1000}
$\displaystyle \int\sin^2 \left({x}\right) \ dx
= \frac{x}{2}-\frac{\sin\left({2x }\right)}{4}+C $
As given by a table reference
Integral calculator uses reduction formula to solve this
But this is an exercise following integration by parts so..
$\displaystyle \int\sin^2 \left({x}\right) \ dx
\implies \int\sin\left({x}\right) \sin\left({x}\right) \ dx $
$\displaystyle u=\sin\left({x}\right) $ $dv=\sin\left({x}\right)\ dx$
$du=-\cos\left({x}\right) \ dx $ $v=\cos\left({x}\right)$
$\displaystyle uv-\int v \ du$
$\displaystyle \sin\left({x}\right)\cos\left({x}\right)
+ \int\cos\left({x}\right)\cos\left({x}\right) \ dx $
Got stuck here
 
Last edited:
Physics news on Phys.org
karush said:
Whitman 8.4.5
$\displaystyle \int\sin^2 \left({x}\right) \ dx
= \frac{x}{2}-\frac{\sin\left({2x }\right)}{4}+C $
As given by a table reference
Integral calculator uses reduction formula to solve this
But this is an exercise following integration by parts so..
$\displaystyle \int\sin^2 \left({x}\right) \ dx
\implies \int\sin\left({x}\right) \sin\left({x}\right) \ dx $
$\displaystyle u=\sin\left({x}\right) $ $dv=\sin\left({x}\right)\ dx$
$du=-\cos\left({x}\right) \ dx $ $v=\cos\left({x}\right)$
$\displaystyle uv-\int v \ du$
$\displaystyle \sin\left({x}\right)\cos\left({x}\right)
+ \int\cos\left({x}\right)\cos\left({x}\right) \ dx $
Got stuck here

I don't know why you always stop at this step. It's pretty obvious that you still have an integration to do, and since you were using integration by parts for sin^2(x), wouldn't it make sense that you would have to use integration by parts for cos^2(x) as well?
 
karush said:
Whitman 8.4.5
$\displaystyle \int\sin^2 \left({x}\right) \ dx
= \frac{x}{2}-\frac{\sin\left({2x }\right)}{4}+C $
As given by a table reference
Integral calculator uses reduction formula to solve this
But this is an exercise following integration by parts so..
$\displaystyle \int\sin^2 \left({x}\right) \ dx
\implies \int\sin\left({x}\right) \sin\left({x}\right) \ dx $
$\displaystyle u=\sin\left({x}\right) $ $dv=\sin\left({x}\right)\ dx$
$du=-\cos\left({x}\right) \ dx $ $v=\cos\left({x}\right)$
$\displaystyle uv-\int v \ du$
$\displaystyle \sin\left({x}\right)\cos\left({x}\right)
+ \int\cos\left({x}\right)\cos\left({x}\right) \ dx $
Got stuck here
Your work is a little off . . .

I \;=\;\int\sin^2x\,dx \;=\;\int\underbrace{\sin x}_u\,\underbrace{\sin x\,dx}_{dv}

\begin{array}{ccc}u \:=\:\sin x && dv \:=\:\sin x\,dx \\ du \:=\:\cos x\,dx && v \:=\:-\cos x \end{array}

I \;=\;\underbrace{(\sin x)}_u \underbrace{(-\cos x)}_v - \int\underbrace{(-\cos x)}<br /> _v\underbrace{(\cos x\,dx)}_{du} \;=\; -\sin x\cos x + \int\cos^2x\,dx

I \;=\; -\sin x\cos x + \int(1 -\sin^2x\,dx)\,dx \;=\;-\sin x\cos x + \int dx - \underbrace{\int\sin^2x\,dx}_{\text{This is }I}

I \;=\;-\sin\cos x + x - I \quad\Rightarrow\quad 2I \;=\;x -\sin x\cos x +C

I \;=\;\frac{1}{2}(x - \sin x\cos x) + C

 
$$\int\sin^2(x)\,dx$$

$$dv=1,v=x$$

$$u=\sin^2(x),du=\sin(2x)\,dx$$

$$\int\sin^2(x)\,dx=x\sin^2(x)-\int x\sin(2x)\,dx$$

IBP (again) with $u=x,dv=\sin(2x)$:

$$\int\sin^2(x)\,dx=x\sin^2(x)-\left(-x\dfrac{\cos(2x)}{2}+\dfrac12\int\cos(2x)\,dx\right)$$

$$=x\sin^2(x)+x\dfrac{\cos(2x)}{2}-\dfrac{\sin(2x)}{4}+C=\dfrac x2-\dfrac{\sin(2x)}{4}+C$$
 
Thanks everyone sorry my latex didn't render to good in the preview it was fine. I'm too used to just looking things up in the tables not knowing how it was derived the book just had examples of odd powers.
 
Back
Top