How Can the Given Definite Integral Identity Be Proven for Any Natural Number n?

Click For Summary

Discussion Overview

The discussion revolves around proving the identity of a definite integral involving a function of a natural number \( n \). Participants explore the validity of the integral identity for any natural number \( n \) and consider implications of the solution provided by another participant.

Discussion Character

  • Exploratory, Debate/contested, Mathematical reasoning

Main Points Raised

  • Post 1 presents the integral identity to be proven.
  • Post 2 suggests a solution to the integral identity.
  • Post 3 expresses interest in the topic and presents an attempt to engage with the problem.
  • Post 4 acknowledges the cleverness of Theia's solution.
  • Post 5 notes that Theia's solution implies that \( n \) does not necessarily have to be a natural number, referencing a check on Wolfram Alpha.
  • Post 6 agrees that the requirement for \( n \) being a natural number is not crucial for the derivative condition but expresses uncertainty about the necessary conditions for \( n \).
  • Post 7 shares further thoughts on the problem, indicating ongoing exploration of the topic.
  • Post 8 addresses Theia directly, suggesting engagement with her contributions.

Areas of Agreement / Disagreement

Participants express differing views on the necessity of \( n \) being a natural number, with some suggesting it may not be essential, while others are uncertain about the implications of this on the proof.

Contextual Notes

There are unresolved questions regarding the conditions required for \( n \) in the context of the integral identity, and the implications of the derivative used in the proposed solution.

Who May Find This Useful

Readers interested in integral calculus, mathematical proofs, and the properties of functions involving natural numbers may find this discussion relevant.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Show, that the identity

\[\int_{0}^{1}\frac{x^{n-1}+x^{n-\frac{1}{2}}-2x^{2n-1}}{1-x}dx = 2\ln2\]

- holds for any natural number $n$.
 
Physics news on Phys.org
Here´s the suggested solution:

Rewriting the integrand:

\[\frac{x^{n-1}+x^{n-1/2}-2x^{2n-1}}{1-x}=\frac{x^{n-1}(1+\sqrt{x}-2x^n)}{1-x}=\frac{x^{n-1}((1-\sqrt{x})(1+2\sqrt{x})+2x-2x^n)}{1-x}\]

\[=\frac{x^{n-1}(1+2\sqrt{x})}{1+\sqrt{x}}+\frac{2x^n(1-x^{n-1})}{1-x}\\\\=x^{n-1}+x^{n-1}\frac{\sqrt{x}}{1+\sqrt{x}}+2x^n\:\frac{(1-x)(1+x+...+x^{n-3}+x^{n-2})}{1-x} \\\\=2x^{n-1}-\frac{x^{n-1}}{1+\sqrt{x}}+2\left ( x^n+x^{n+1}+...+x^{2n-2} \right ) \\\\=2\left ( x^{n-1}+x^n+...+x^{2n-2} \right )-\frac{x^{n-1}}{1+\sqrt{x}}\]

Integrating yields:
\[I = \int_{0}^{1} \left ( 2\left ( x^{n-1}+x^n+...+x^{2n-2} \right )-\frac{x^{n-1}}{1+\sqrt{x}} \right )dx = 2\sum_{j=n}^{2n-1}\frac{1}{j}-\int_{0}^{1}\frac{x^{n-1}}{1+\sqrt{x}}dx\]
The last term can be rewritten as ($x = u^2$):
\[\int_{0}^{1}\frac{x^{n-1}}{1+\sqrt{x}}dx = 2\int_{0}^{1}\frac{u^{2n-1}}{1+u }du\]

Rewriting the integrand using the geometric series:

\[\frac{u^{2n-1}}{1+u} = u^{2n-1}\sum_{i=0}^{\infty}(-u)^i = u^{2n-1}-u^{2n}+u^{2n+1}-... \]

The right hand side is thus obtained by cutting off the first $2n-1$ terms of an alternating geometric series:

\[\frac{1}{1+u}=1-u+u^2-u^3+...+u^{2n-2}-u^{2n-1}+u^{2n}-u^{2n+1}... \\\\=1-u+u^2-u^3+...+u^{2n-2}- \left ( u^{2n-1}-u^{2n}+u^{2n+1}... \right )\]

Thus, the integral can be written:

\[2\int_{0}^{1}\frac{u^{2n-1}}{1+u }du = 2\int_{0}^{1}\left ( 1-u+u^2-u^3+...+u^{2n-2}-\frac{1}{1+u} \right )du \\\\=2\left ( \sum_{j=1}^{2n-1}\frac{(-1)^{j-1}}{j}-\ln 2 \right )\]

Our total integral now has the form:

\[I =2\sum_{j=n}^{2n-1}\frac{1}{j}- 2\left ( \sum_{j=1}^{2n-1}\frac{(-1)^{j-1}}{j}-\ln 2 \right )\\\\ =2\sum_{j=n}^{2n-1}\frac{1}{j}-2\left ( \sum_{j=1}^{2n-1}\frac{1}{j} - 2\sum_{j=1}^{n-1}\frac{1}{2j}\right )+2\ln 2 \\\\=2\left ( \sum_{j=1}^{2n-1}\frac{1}{j}-\left ( \sum_{j=1}^{2n-1}\frac{1}{j}\right ) \right )+2\ln 2 \\\\= 2 \ln 2.\]
- and we´re done.
 
I'm sorry about poking a bit older threat, but I found this interesting, so here is my attempt:

Let's define

$$F(n) = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x}\mathrm{d}x \qquad \forall \ n \in \mathbb{N}.$$

One wants to show that the value of $$F(n)$$ doesn't change, i.e. it's constant. To show this, one needs to show that $$F'(n) = 0$$, where $$'$$ denotes the derivative with respect to $$n$$.

Let's calculate the derivative by applying Leibniz's rule of derivating under integral sign. One obtains

$$\begin{align*}F'(n) &= \frac{\mathrm{d}F}{\mathrm{d}n} = \int_0^1 \frac{\partial}{\partial n} \left( \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x} \right) \mathrm{d}x \\
& = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 4x^{2n-1}}{1-x} \ln x \ \mathrm{d}x \ .\end{align*}$$

Next one uses the geometric serie to rewrite denominator ($$0 \le x < 1$$):

$$ \frac{1}{1-x} = \sum_{v = 0}^{\infty} x^v = 1 + x + x^2 + \cdots . $$

Using this, the derivative of $$F$$ can be written as

$$\begin{align*}F'(n) &= \int_0^1 \left( x^{n-1} + x^{n-1/2} - 2x^{2n-1} \right) \ln x \sum_{v = 0}^{\infty} x^v \ \mathrm{d}x \\
&= \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1} \ln x \ \mathrm{d}x + \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=-} -4 \int_0^1 \sum_{v = 0}^{\infty} x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now one can change the order of summation and integration (by e.g. Fubini's theorem) and one obtains

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1} \ln x \ \mathrm{d}x + \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} \int_0^1 x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now integrations are trivial and one can write

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1} \ln x + \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1/2} \ln x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+2n-1} \ln x \\
&= -\sum_{v=0}^{\infty} \frac{1}{\left( v+n \right) ^2} - \sum_{v=0}^{\infty} \frac{1}{\left( v+n+\tfrac{1}{2} \right) ^2} + 4 \sum_{v=0}^{\infty} \frac{1}{\left( v+2n \right) ^2} . \end{align*}$$

In terms of polygamma function $$\psi ^{(m)}$$ this can be written

$$ F'(n) = 4\psi ^{(1)}(2n) - \psi ^{(1)}(n + \tfrac{1}{2}) - \psi ^{(1)}(n) \ . $$

By using the multiplication formula one can rewrite the $$4\psi ^{(1)}(2n)$$:

$$ 4\psi ^{(1)}(2n) = \psi ^{(1)}(n + \tfrac{1}{2}) + \psi ^{(1)}(n) \ , $$

which gives the result $$F'(n) = 0 \ n \in \mathbb{N}$$, and hence $$F(n) = \textrm{constant}.$$

The value of $$F(n)$$ one can evaluate by substituting e.g. $$n = 1$$, which gives

$$\begin{align*} F(n) &= F(1) = \int_0^1 \frac{x^0 + x^{1/2} - 2x^1}{1-x}\mathrm{d}x \\
&= {\Big/}_{\!\!\!0}^{1} \left( 2x - 2\sqrt{x} + 2 \ln \left( \sqrt{x} + 1 \right) \right) \\
&= 2 \ln 2 , \end{align*}$$

which is what one wanted to show. QED.
 
Thankyou, Theia, for a clever solution! :cool:
 
Theia said:
I'm sorry about poking a bit older threat, but I found this interesting, so here is my attempt:

Let's define

$$F(n) = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x}\mathrm{d}x \qquad \forall \ n \in \mathbb{N}.$$

One wants to show that the value of $$F(n)$$ doesn't change, i.e. it's constant. To show this, one needs to show that $$F'(n) = 0$$, where $$'$$ denotes the derivative with respect to $$n$$.

Let's calculate the derivative by applying Leibniz's rule of derivating under integral sign. One obtains

$$\begin{align*}F'(n) &= \frac{\mathrm{d}F}{\mathrm{d}n} = \int_0^1 \frac{\partial}{\partial n} \left( \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x} \right) \mathrm{d}x \\
& = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 4x^{2n-1}}{1-x} \ln x \ \mathrm{d}x \ .\end{align*}$$

Next one uses the geometric serie to rewrite denominator ($$0 \le x < 1$$):

$$ \frac{1}{1-x} = \sum_{v = 0}^{\infty} x^v = 1 + x + x^2 + \cdots . $$

Using this, the derivative of $$F$$ can be written as

$$\begin{align*}F'(n) &= \int_0^1 \left( x^{n-1} + x^{n-1/2} - 2x^{2n-1} \right) \ln x \sum_{v = 0}^{\infty} x^v \ \mathrm{d}x \\
&= \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1} \ln x \ \mathrm{d}x + \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=-} -4 \int_0^1 \sum_{v = 0}^{\infty} x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now one can change the order of summation and integration (by e.g. Fubini's theorem) and one obtains

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1} \ln x \ \mathrm{d}x + \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} \int_0^1 x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now integrations are trivial and one can write

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1} \ln x + \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1/2} \ln x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+2n-1} \ln x \\
&= -\sum_{v=0}^{\infty} \frac{1}{\left( v+n \right) ^2} - \sum_{v=0}^{\infty} \frac{1}{\left( v+n+\tfrac{1}{2} \right) ^2} + 4 \sum_{v=0}^{\infty} \frac{1}{\left( v+2n \right) ^2} . \end{align*}$$

In terms of polygamma function $$\psi ^{(m)}$$ this can be written

$$ F'(n) = 4\psi ^{(1)}(2n) - \psi ^{(1)}(n + \tfrac{1}{2}) - \psi ^{(1)}(n) \ . $$

By using the multiplication formula one can rewrite the $$4\psi ^{(1)}(2n)$$:

$$ 4\psi ^{(1)}(2n) = \psi ^{(1)}(n + \tfrac{1}{2}) + \psi ^{(1)}(n) \ , $$

which gives the result $$F'(n) = 0 \ n \in \mathbb{N}$$, and hence $$F(n) = \textrm{constant}.$$

The value of $$F(n)$$ one can evaluate by substituting e.g. $$n = 1$$, which gives

$$\begin{align*} F(n) &= F(1) = \int_0^1 \frac{x^0 + x^{1/2} - 2x^1}{1-x}\mathrm{d}x \\
&= {\Big/}_{\!\!\!0}^{1} \left( 2x - 2\sqrt{x} + 2 \ln \left( \sqrt{x} + 1 \right) \right) \\
&= 2 \ln 2 , \end{align*}$$

which is what one wanted to show. QED.
Interesting. I note that Theia's solution uses a derivative of n, which implies that n doesn't have to be natural number! (I double-checked this on W|A.)

-Dan
 
Yes, $$n \in \mathbb{N}$$ is not a crucial requirement for $$F'(n) = 0$$. But I haven't yet found a proof that shows what is required for $$n$$.(Wondering)
 
Theia said:
I'm sorry about poking a bit older threat, but I found this interesting, so here is my attempt:

Let's define

$$F(n) = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x}\mathrm{d}x \qquad \forall \ n \in \mathbb{N}.$$

One wants to show that the value of $$F(n)$$ doesn't change, i.e. it's constant. To show this, one needs to show that $$F'(n) = 0$$, where $$'$$ denotes the derivative with respect to $$n$$.

Let's calculate the derivative by applying Leibniz's rule of derivating under integral sign. One obtains

$$\begin{align*}F'(n) &= \frac{\mathrm{d}F}{\mathrm{d}n} = \int_0^1 \frac{\partial}{\partial n} \left( \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x} \right) \mathrm{d}x \\
& = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 4x^{2n-1}}{1-x} \ln x \ \mathrm{d}x \ .\end{align*}$$

Next one uses the geometric serie to rewrite denominator ($$0 \le x < 1$$):

$$ \frac{1}{1-x} = \sum_{v = 0}^{\infty} x^v = 1 + x + x^2 + \cdots . $$

Using this, the derivative of $$F$$ can be written as

$$\begin{align*}F'(n) &= \int_0^1 \left( x^{n-1} + x^{n-1/2} - 2x^{2n-1} \right) \ln x \sum_{v = 0}^{\infty} x^v \ \mathrm{d}x \\
&= \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1} \ln x \ \mathrm{d}x + \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=-} -4 \int_0^1 \sum_{v = 0}^{\infty} x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now one can change the order of summation and integration (by e.g. Fubini's theorem) and one obtains

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1} \ln x \ \mathrm{d}x + \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} \int_0^1 x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now integrations are trivial and one can write

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1} \ln x + \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1/2} \ln x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+2n-1} \ln x \\
&= -\sum_{v=0}^{\infty} \frac{1}{\left( v+n \right) ^2} - \sum_{v=0}^{\infty} \frac{1}{\left( v+n+\tfrac{1}{2} \right) ^2} + 4 \sum_{v=0}^{\infty} \frac{1}{\left( v+2n \right) ^2} . \end{align*}$$

In terms of polygamma function $$\psi ^{(m)}$$ this can be written

$$ F'(n) = 4\psi ^{(1)}(2n) - \psi ^{(1)}(n + \tfrac{1}{2}) - \psi ^{(1)}(n) \ . $$

By using the multiplication formula one can rewrite the $$4\psi ^{(1)}(2n)$$:

$$ 4\psi ^{(1)}(2n) = \psi ^{(1)}(n + \tfrac{1}{2}) + \psi ^{(1)}(n) \ , $$

which gives the result $$F'(n) = 0 \ n \in \mathbb{N}$$, and hence $$F(n) = \textrm{constant}.$$

The value of $$F(n)$$ one can evaluate by substituting e.g. $$n = 1$$, which gives

$$\begin{align*} F(n) &= F(1) = \int_0^1 \frac{x^0 + x^{1/2} - 2x^1}{1-x}\mathrm{d}x \\
&= {\Big/}_{\!\!\!0}^{1} \left( 2x - 2\sqrt{x} + 2 \ln \left( \sqrt{x} + 1 \right) \right) \\
&= 2 \ln 2 , \end{align*}$$

which is what one wanted to show. QED.
It really is an interesting question.

I've been thinking about it this evening, and wonder if what's below makes sense.
I was thinking about an alternative way to show that the derivative vanishes in your solution. For $\alpha \ge 1$, let $\displaystyle f(\alpha) = \int_0^1 \frac{x^{\alpha-1}+x^{\alpha-\frac{1}{2}}-2x^{2\alpha-1}}{1-x}\,\mathrm{dx}.$ Then $\displaystyle f'(\alpha) = \int_0^1 \frac{x^{\alpha-1}+x^{\alpha-\frac{1}{2}}-4x^{2\alpha-1}}{1-x} \log(x)\,\mathrm{dx}.$

For any $x \in (0, 1)$ we have $(1-\frac{1}{x}) \leqslant \log(x) \leqslant x-1. $ Applying this to the integral, we have

$\displaystyle \int_0^1 \frac{x^{\alpha-1}+x^{\alpha-\frac{1}{2}}-4x^{2\alpha-1}}{1-x} (1-\frac{1}{x})\,\mathrm{dx} \leqslant f'(\alpha) \leqslant \int_0^1 \frac{(x^{\alpha-1}+x^{\alpha-\frac{1}{2}}-4x^{2\alpha-1}(x-1)}{1-x} \,\mathrm{dx}$

$\implies \displaystyle \int_0^1 {4x^{2\alpha-2}-x^{\alpha-\frac{3}{2}}-x^{\alpha-2}
} \,\mathrm{dx} \leqslant f'(\alpha)\leqslant \int_0^1(4x^{2\alpha-1} -x^{\alpha-\frac{1}{2}}-x^{\alpha-1}) \,\mathrm{dx} $

Hence $ \displaystyle \frac{1}{-2\alpha^2+3\alpha-1} \leqslant f'(\alpha) \leqslant \frac{1}{2\alpha^2+\alpha}$. Solving these with the assumption $\alpha \geqslant 1$ we've:

$ \displaystyle \frac{1}{-2\alpha^2+3\alpha-1} \leqslant f'(\alpha) \implies f'(\alpha) \in [0,\infty); $ and $ \displaystyle f'(\alpha) \leqslant \frac{1}{2\alpha^2+\alpha} \implies f'(\alpha) \in (-\infty,0].$

So $f'(\alpha) \in (-\infty, 0] \cap [0, \infty) = \left\{0\right\}$. So $f'(\alpha) \in \left\{0\right\}$ so $f'(\alpha) = 0$ for all $\alpha \ge 1$. Thus $f$ is constant.

Not sure if I've made a mistake somewhere. But the approach should work nonetheless I feel.
 
Well... It has been a while, isn't it? (Wave)

Getting back to this problem, as it was very interesting. Now I have following solution for it:

Let's define

\[ g(a) = \int_{0} ^{1} \frac{x^{a}}{1 - x} \mathrm{d}x = \sum_{v=0} ^{\infty} \int_{0} ^{1} x^{a+v}\mathrm{d}x = \sum_{v=0} ^{\infty} \frac{1}{a+v+1}. \]

Now the integral in question can be written as

\[ F(n) = g(n-1) + g \left( n-\frac{1}{2} \right) - 2g(2n-1) = \sum_{v=0} ^{\infty} \left( \frac{1}{v + n} + \frac{1}{v + \left( n + \frac{1}{2} \right)} - \frac{2}{v + 2n} \right). \]

By noticing that \( a + v \ne -1 \) one arrives to a condition \( n \ne 0, -\frac{1}{2}, -1, -\frac{3}{2}, \ldots \).

Then by using identities of digamma function one directly obtains

\[ F(n) = 2\psi (2n+1) - \psi (n+1) - \psi \left(n + \frac{3}{2}\right) + \frac{1}{n} + \frac{1}{n + \frac{1}{2}} - \frac{2}{2n} = 2\ln 2.\]

Ok, but what if \( n = 0, -\frac{1}{2} , -1, -\frac{3}{2}, \ldots \)?

Let's write \( n = -\frac{p}{2} \) where \(p = 0, 1, \ldots \). After that one can substitute \( x = \frac{1}{q^{2}} \) and one obtains

\[ F\left( n = -\frac{p}{2} \right) = 2\int_{1} ^{\infty} \frac{q^{p} + q^{p+1} - 2q^{2p+1}}{q^{2} - 1} \mathrm{d}q \].

This is clearly divergent.

Hence it looks like the value of the integral equals to \( 2\ln 2\) as long as \(n \ne 0, -\frac{1}{2}, -1, -\frac{3}{2}, \ldots \).

Any thoughts on this?
 
Hello,Theia

Unfortunately, I am not familiar with the digamma function, so I am not competent
to answer and comment on your interesting solution in a proper manner. :unsure:

I do hope, that someone else in this forum can be of help here ...
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K