How Can the Given Definite Integral Identity Be Proven for Any Natural Number n?

Click For Summary
SUMMARY

The integral identity \[\int_{0}^{1}\frac{x^{n-1}+x^{n-\frac{1}{2}}-2x^{2n-1}}{1-x}dx = 2\ln2\] is proven to hold for any natural number \(n\). The discussion highlights a solution proposed by Theia, which utilizes a derivative of \(n\), suggesting that \(n\) may not be strictly limited to natural numbers. Dan points out that the condition \(n \in \mathbb{N}\) is not essential for the derivative \(F'(n) = 0\), indicating a broader applicability of the proof. Further exploration is encouraged to clarify the requirements for \(n\).

PREREQUISITES
  • Understanding of definite integrals and their properties
  • Familiarity with logarithmic functions and their applications
  • Knowledge of derivatives and their implications in calculus
  • Basic concepts of mathematical proof techniques
NEXT STEPS
  • Research the properties of definite integrals involving logarithmic identities
  • Study the implications of derivatives in calculus, particularly in relation to natural numbers
  • Explore advanced proof techniques in mathematical analysis
  • Investigate the broader applicability of integral identities beyond natural numbers
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integral calculus and mathematical proofs.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Show, that the identity

\[\int_{0}^{1}\frac{x^{n-1}+x^{n-\frac{1}{2}}-2x^{2n-1}}{1-x}dx = 2\ln2\]

- holds for any natural number $n$.
 
Physics news on Phys.org
Here´s the suggested solution:

Rewriting the integrand:

\[\frac{x^{n-1}+x^{n-1/2}-2x^{2n-1}}{1-x}=\frac{x^{n-1}(1+\sqrt{x}-2x^n)}{1-x}=\frac{x^{n-1}((1-\sqrt{x})(1+2\sqrt{x})+2x-2x^n)}{1-x}\]

\[=\frac{x^{n-1}(1+2\sqrt{x})}{1+\sqrt{x}}+\frac{2x^n(1-x^{n-1})}{1-x}\\\\=x^{n-1}+x^{n-1}\frac{\sqrt{x}}{1+\sqrt{x}}+2x^n\:\frac{(1-x)(1+x+...+x^{n-3}+x^{n-2})}{1-x} \\\\=2x^{n-1}-\frac{x^{n-1}}{1+\sqrt{x}}+2\left ( x^n+x^{n+1}+...+x^{2n-2} \right ) \\\\=2\left ( x^{n-1}+x^n+...+x^{2n-2} \right )-\frac{x^{n-1}}{1+\sqrt{x}}\]

Integrating yields:
\[I = \int_{0}^{1} \left ( 2\left ( x^{n-1}+x^n+...+x^{2n-2} \right )-\frac{x^{n-1}}{1+\sqrt{x}} \right )dx = 2\sum_{j=n}^{2n-1}\frac{1}{j}-\int_{0}^{1}\frac{x^{n-1}}{1+\sqrt{x}}dx\]
The last term can be rewritten as ($x = u^2$):
\[\int_{0}^{1}\frac{x^{n-1}}{1+\sqrt{x}}dx = 2\int_{0}^{1}\frac{u^{2n-1}}{1+u }du\]

Rewriting the integrand using the geometric series:

\[\frac{u^{2n-1}}{1+u} = u^{2n-1}\sum_{i=0}^{\infty}(-u)^i = u^{2n-1}-u^{2n}+u^{2n+1}-... \]

The right hand side is thus obtained by cutting off the first $2n-1$ terms of an alternating geometric series:

\[\frac{1}{1+u}=1-u+u^2-u^3+...+u^{2n-2}-u^{2n-1}+u^{2n}-u^{2n+1}... \\\\=1-u+u^2-u^3+...+u^{2n-2}- \left ( u^{2n-1}-u^{2n}+u^{2n+1}... \right )\]

Thus, the integral can be written:

\[2\int_{0}^{1}\frac{u^{2n-1}}{1+u }du = 2\int_{0}^{1}\left ( 1-u+u^2-u^3+...+u^{2n-2}-\frac{1}{1+u} \right )du \\\\=2\left ( \sum_{j=1}^{2n-1}\frac{(-1)^{j-1}}{j}-\ln 2 \right )\]

Our total integral now has the form:

\[I =2\sum_{j=n}^{2n-1}\frac{1}{j}- 2\left ( \sum_{j=1}^{2n-1}\frac{(-1)^{j-1}}{j}-\ln 2 \right )\\\\ =2\sum_{j=n}^{2n-1}\frac{1}{j}-2\left ( \sum_{j=1}^{2n-1}\frac{1}{j} - 2\sum_{j=1}^{n-1}\frac{1}{2j}\right )+2\ln 2 \\\\=2\left ( \sum_{j=1}^{2n-1}\frac{1}{j}-\left ( \sum_{j=1}^{2n-1}\frac{1}{j}\right ) \right )+2\ln 2 \\\\= 2 \ln 2.\]
- and we´re done.
 
I'm sorry about poking a bit older threat, but I found this interesting, so here is my attempt:

Let's define

$$F(n) = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x}\mathrm{d}x \qquad \forall \ n \in \mathbb{N}.$$

One wants to show that the value of $$F(n)$$ doesn't change, i.e. it's constant. To show this, one needs to show that $$F'(n) = 0$$, where $$'$$ denotes the derivative with respect to $$n$$.

Let's calculate the derivative by applying Leibniz's rule of derivating under integral sign. One obtains

$$\begin{align*}F'(n) &= \frac{\mathrm{d}F}{\mathrm{d}n} = \int_0^1 \frac{\partial}{\partial n} \left( \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x} \right) \mathrm{d}x \\
& = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 4x^{2n-1}}{1-x} \ln x \ \mathrm{d}x \ .\end{align*}$$

Next one uses the geometric serie to rewrite denominator ($$0 \le x < 1$$):

$$ \frac{1}{1-x} = \sum_{v = 0}^{\infty} x^v = 1 + x + x^2 + \cdots . $$

Using this, the derivative of $$F$$ can be written as

$$\begin{align*}F'(n) &= \int_0^1 \left( x^{n-1} + x^{n-1/2} - 2x^{2n-1} \right) \ln x \sum_{v = 0}^{\infty} x^v \ \mathrm{d}x \\
&= \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1} \ln x \ \mathrm{d}x + \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=-} -4 \int_0^1 \sum_{v = 0}^{\infty} x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now one can change the order of summation and integration (by e.g. Fubini's theorem) and one obtains

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1} \ln x \ \mathrm{d}x + \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} \int_0^1 x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now integrations are trivial and one can write

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1} \ln x + \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1/2} \ln x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+2n-1} \ln x \\
&= -\sum_{v=0}^{\infty} \frac{1}{\left( v+n \right) ^2} - \sum_{v=0}^{\infty} \frac{1}{\left( v+n+\tfrac{1}{2} \right) ^2} + 4 \sum_{v=0}^{\infty} \frac{1}{\left( v+2n \right) ^2} . \end{align*}$$

In terms of polygamma function $$\psi ^{(m)}$$ this can be written

$$ F'(n) = 4\psi ^{(1)}(2n) - \psi ^{(1)}(n + \tfrac{1}{2}) - \psi ^{(1)}(n) \ . $$

By using the multiplication formula one can rewrite the $$4\psi ^{(1)}(2n)$$:

$$ 4\psi ^{(1)}(2n) = \psi ^{(1)}(n + \tfrac{1}{2}) + \psi ^{(1)}(n) \ , $$

which gives the result $$F'(n) = 0 \ n \in \mathbb{N}$$, and hence $$F(n) = \textrm{constant}.$$

The value of $$F(n)$$ one can evaluate by substituting e.g. $$n = 1$$, which gives

$$\begin{align*} F(n) &= F(1) = \int_0^1 \frac{x^0 + x^{1/2} - 2x^1}{1-x}\mathrm{d}x \\
&= {\Big/}_{\!\!\!0}^{1} \left( 2x - 2\sqrt{x} + 2 \ln \left( \sqrt{x} + 1 \right) \right) \\
&= 2 \ln 2 , \end{align*}$$

which is what one wanted to show. QED.
 
Thankyou, Theia, for a clever solution! :cool:
 
Theia said:
I'm sorry about poking a bit older threat, but I found this interesting, so here is my attempt:

Let's define

$$F(n) = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x}\mathrm{d}x \qquad \forall \ n \in \mathbb{N}.$$

One wants to show that the value of $$F(n)$$ doesn't change, i.e. it's constant. To show this, one needs to show that $$F'(n) = 0$$, where $$'$$ denotes the derivative with respect to $$n$$.

Let's calculate the derivative by applying Leibniz's rule of derivating under integral sign. One obtains

$$\begin{align*}F'(n) &= \frac{\mathrm{d}F}{\mathrm{d}n} = \int_0^1 \frac{\partial}{\partial n} \left( \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x} \right) \mathrm{d}x \\
& = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 4x^{2n-1}}{1-x} \ln x \ \mathrm{d}x \ .\end{align*}$$

Next one uses the geometric serie to rewrite denominator ($$0 \le x < 1$$):

$$ \frac{1}{1-x} = \sum_{v = 0}^{\infty} x^v = 1 + x + x^2 + \cdots . $$

Using this, the derivative of $$F$$ can be written as

$$\begin{align*}F'(n) &= \int_0^1 \left( x^{n-1} + x^{n-1/2} - 2x^{2n-1} \right) \ln x \sum_{v = 0}^{\infty} x^v \ \mathrm{d}x \\
&= \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1} \ln x \ \mathrm{d}x + \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=-} -4 \int_0^1 \sum_{v = 0}^{\infty} x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now one can change the order of summation and integration (by e.g. Fubini's theorem) and one obtains

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1} \ln x \ \mathrm{d}x + \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} \int_0^1 x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now integrations are trivial and one can write

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1} \ln x + \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1/2} \ln x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+2n-1} \ln x \\
&= -\sum_{v=0}^{\infty} \frac{1}{\left( v+n \right) ^2} - \sum_{v=0}^{\infty} \frac{1}{\left( v+n+\tfrac{1}{2} \right) ^2} + 4 \sum_{v=0}^{\infty} \frac{1}{\left( v+2n \right) ^2} . \end{align*}$$

In terms of polygamma function $$\psi ^{(m)}$$ this can be written

$$ F'(n) = 4\psi ^{(1)}(2n) - \psi ^{(1)}(n + \tfrac{1}{2}) - \psi ^{(1)}(n) \ . $$

By using the multiplication formula one can rewrite the $$4\psi ^{(1)}(2n)$$:

$$ 4\psi ^{(1)}(2n) = \psi ^{(1)}(n + \tfrac{1}{2}) + \psi ^{(1)}(n) \ , $$

which gives the result $$F'(n) = 0 \ n \in \mathbb{N}$$, and hence $$F(n) = \textrm{constant}.$$

The value of $$F(n)$$ one can evaluate by substituting e.g. $$n = 1$$, which gives

$$\begin{align*} F(n) &= F(1) = \int_0^1 \frac{x^0 + x^{1/2} - 2x^1}{1-x}\mathrm{d}x \\
&= {\Big/}_{\!\!\!0}^{1} \left( 2x - 2\sqrt{x} + 2 \ln \left( \sqrt{x} + 1 \right) \right) \\
&= 2 \ln 2 , \end{align*}$$

which is what one wanted to show. QED.
Interesting. I note that Theia's solution uses a derivative of n, which implies that n doesn't have to be natural number! (I double-checked this on W|A.)

-Dan
 
Yes, $$n \in \mathbb{N}$$ is not a crucial requirement for $$F'(n) = 0$$. But I haven't yet found a proof that shows what is required for $$n$$.(Wondering)
 
Theia said:
I'm sorry about poking a bit older threat, but I found this interesting, so here is my attempt:

Let's define

$$F(n) = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x}\mathrm{d}x \qquad \forall \ n \in \mathbb{N}.$$

One wants to show that the value of $$F(n)$$ doesn't change, i.e. it's constant. To show this, one needs to show that $$F'(n) = 0$$, where $$'$$ denotes the derivative with respect to $$n$$.

Let's calculate the derivative by applying Leibniz's rule of derivating under integral sign. One obtains

$$\begin{align*}F'(n) &= \frac{\mathrm{d}F}{\mathrm{d}n} = \int_0^1 \frac{\partial}{\partial n} \left( \frac{x^{n-1} + x^{n-1/2} - 2x^{2n-1}}{1-x} \right) \mathrm{d}x \\
& = \int_0^1 \frac{x^{n-1} + x^{n-1/2} - 4x^{2n-1}}{1-x} \ln x \ \mathrm{d}x \ .\end{align*}$$

Next one uses the geometric serie to rewrite denominator ($$0 \le x < 1$$):

$$ \frac{1}{1-x} = \sum_{v = 0}^{\infty} x^v = 1 + x + x^2 + \cdots . $$

Using this, the derivative of $$F$$ can be written as

$$\begin{align*}F'(n) &= \int_0^1 \left( x^{n-1} + x^{n-1/2} - 2x^{2n-1} \right) \ln x \sum_{v = 0}^{\infty} x^v \ \mathrm{d}x \\
&= \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1} \ln x \ \mathrm{d}x + \int_0^1 \sum_{v = 0}^{\infty} x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=-} -4 \int_0^1 \sum_{v = 0}^{\infty} x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now one can change the order of summation and integration (by e.g. Fubini's theorem) and one obtains

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1} \ln x \ \mathrm{d}x + \sum_{v = 0}^{\infty} \int_0^1 x^{v+n-1/2} \ln x \ \mathrm{d}x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} \int_0^1 x^{v+2n-1} \ln x \ \mathrm{d}x \ .\end{align*}$$

Now integrations are trivial and one can write

$$\begin{align*}F'(n) &= \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1} \ln x + \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+n-1/2} \ln x \\
&\phantom{=} -4 \sum_{v = 0}^{\infty} {\Big/}_{\!\!\!0}^{1} x^{v+2n-1} \ln x \\
&= -\sum_{v=0}^{\infty} \frac{1}{\left( v+n \right) ^2} - \sum_{v=0}^{\infty} \frac{1}{\left( v+n+\tfrac{1}{2} \right) ^2} + 4 \sum_{v=0}^{\infty} \frac{1}{\left( v+2n \right) ^2} . \end{align*}$$

In terms of polygamma function $$\psi ^{(m)}$$ this can be written

$$ F'(n) = 4\psi ^{(1)}(2n) - \psi ^{(1)}(n + \tfrac{1}{2}) - \psi ^{(1)}(n) \ . $$

By using the multiplication formula one can rewrite the $$4\psi ^{(1)}(2n)$$:

$$ 4\psi ^{(1)}(2n) = \psi ^{(1)}(n + \tfrac{1}{2}) + \psi ^{(1)}(n) \ , $$

which gives the result $$F'(n) = 0 \ n \in \mathbb{N}$$, and hence $$F(n) = \textrm{constant}.$$

The value of $$F(n)$$ one can evaluate by substituting e.g. $$n = 1$$, which gives

$$\begin{align*} F(n) &= F(1) = \int_0^1 \frac{x^0 + x^{1/2} - 2x^1}{1-x}\mathrm{d}x \\
&= {\Big/}_{\!\!\!0}^{1} \left( 2x - 2\sqrt{x} + 2 \ln \left( \sqrt{x} + 1 \right) \right) \\
&= 2 \ln 2 , \end{align*}$$

which is what one wanted to show. QED.
It really is an interesting question.

I've been thinking about it this evening, and wonder if what's below makes sense.
I was thinking about an alternative way to show that the derivative vanishes in your solution. For $\alpha \ge 1$, let $\displaystyle f(\alpha) = \int_0^1 \frac{x^{\alpha-1}+x^{\alpha-\frac{1}{2}}-2x^{2\alpha-1}}{1-x}\,\mathrm{dx}.$ Then $\displaystyle f'(\alpha) = \int_0^1 \frac{x^{\alpha-1}+x^{\alpha-\frac{1}{2}}-4x^{2\alpha-1}}{1-x} \log(x)\,\mathrm{dx}.$

For any $x \in (0, 1)$ we have $(1-\frac{1}{x}) \leqslant \log(x) \leqslant x-1. $ Applying this to the integral, we have

$\displaystyle \int_0^1 \frac{x^{\alpha-1}+x^{\alpha-\frac{1}{2}}-4x^{2\alpha-1}}{1-x} (1-\frac{1}{x})\,\mathrm{dx} \leqslant f'(\alpha) \leqslant \int_0^1 \frac{(x^{\alpha-1}+x^{\alpha-\frac{1}{2}}-4x^{2\alpha-1}(x-1)}{1-x} \,\mathrm{dx}$

$\implies \displaystyle \int_0^1 {4x^{2\alpha-2}-x^{\alpha-\frac{3}{2}}-x^{\alpha-2}
} \,\mathrm{dx} \leqslant f'(\alpha)\leqslant \int_0^1(4x^{2\alpha-1} -x^{\alpha-\frac{1}{2}}-x^{\alpha-1}) \,\mathrm{dx} $

Hence $ \displaystyle \frac{1}{-2\alpha^2+3\alpha-1} \leqslant f'(\alpha) \leqslant \frac{1}{2\alpha^2+\alpha}$. Solving these with the assumption $\alpha \geqslant 1$ we've:

$ \displaystyle \frac{1}{-2\alpha^2+3\alpha-1} \leqslant f'(\alpha) \implies f'(\alpha) \in [0,\infty); $ and $ \displaystyle f'(\alpha) \leqslant \frac{1}{2\alpha^2+\alpha} \implies f'(\alpha) \in (-\infty,0].$

So $f'(\alpha) \in (-\infty, 0] \cap [0, \infty) = \left\{0\right\}$. So $f'(\alpha) \in \left\{0\right\}$ so $f'(\alpha) = 0$ for all $\alpha \ge 1$. Thus $f$ is constant.

Not sure if I've made a mistake somewhere. But the approach should work nonetheless I feel.
 
Well... It has been a while, isn't it? (Wave)

Getting back to this problem, as it was very interesting. Now I have following solution for it:

Let's define

\[ g(a) = \int_{0} ^{1} \frac{x^{a}}{1 - x} \mathrm{d}x = \sum_{v=0} ^{\infty} \int_{0} ^{1} x^{a+v}\mathrm{d}x = \sum_{v=0} ^{\infty} \frac{1}{a+v+1}. \]

Now the integral in question can be written as

\[ F(n) = g(n-1) + g \left( n-\frac{1}{2} \right) - 2g(2n-1) = \sum_{v=0} ^{\infty} \left( \frac{1}{v + n} + \frac{1}{v + \left( n + \frac{1}{2} \right)} - \frac{2}{v + 2n} \right). \]

By noticing that \( a + v \ne -1 \) one arrives to a condition \( n \ne 0, -\frac{1}{2}, -1, -\frac{3}{2}, \ldots \).

Then by using identities of digamma function one directly obtains

\[ F(n) = 2\psi (2n+1) - \psi (n+1) - \psi \left(n + \frac{3}{2}\right) + \frac{1}{n} + \frac{1}{n + \frac{1}{2}} - \frac{2}{2n} = 2\ln 2.\]

Ok, but what if \( n = 0, -\frac{1}{2} , -1, -\frac{3}{2}, \ldots \)?

Let's write \( n = -\frac{p}{2} \) where \(p = 0, 1, \ldots \). After that one can substitute \( x = \frac{1}{q^{2}} \) and one obtains

\[ F\left( n = -\frac{p}{2} \right) = 2\int_{1} ^{\infty} \frac{q^{p} + q^{p+1} - 2q^{2p+1}}{q^{2} - 1} \mathrm{d}q \].

This is clearly divergent.

Hence it looks like the value of the integral equals to \( 2\ln 2\) as long as \(n \ne 0, -\frac{1}{2}, -1, -\frac{3}{2}, \ldots \).

Any thoughts on this?
 
Hello,Theia

Unfortunately, I am not familiar with the digamma function, so I am not competent
to answer and comment on your interesting solution in a proper manner. :unsure:

I do hope, that someone else in this forum can be of help here ...
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
6
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K