MHB How can the quadratic equation be used to solve a trigonometric identity?

  • Thread starter Thread starter Simon green
  • Start date Start date
  • Tags Tags
    identities
Simon green
Messages
10
Reaction score
0
Can anybody please help me solve this?

4cot² - 6 cosec x = -6
 
Mathematics news on Phys.org
simongreen93 said:
Can anybody please help me solve this?

4cot² - 6 cosec x = -6

Good evening, what thoughts have you had to help solve this problem?I prefer to write everything in terms of sin and cos

[math]4\dfrac{\cos^2(x)}{\sin^2(x)} - \dfrac{6}{\sin(x)} = -6[/math]

Some thoughts:

  • Clear the denominator by multiplying by the LCD of the terms above
  • Work only with one trig function - I would recommend sine as you have more of them - do you know of an identity to change your cos to sin?
 
simongreen93 said:
Can anybody please help me solve this?

4cot² - 6 cosec x = -6

Since $\displaystyle \begin{align*} 1 + \cot^2{(x)} \equiv \csc^2{(x)} \end{align*}$ that means

$\displaystyle \begin{align*} 4\left[ \csc^2{(x)} - 1 \right] - 6\csc{(x)} &= -6 \\ 4\csc^2{(x)} - 4 - 6\csc{(x)} &= -6 \\ 4\csc^2{(x)} - 6\csc{(x)} + 2 &= 0 \\ 2\csc^2{(x)} - 3\csc{(x)} + 1 &= 0 \end{align*}$

Now solve the resulting quadratic.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top