MHB How Can These Trigonometric Equations Be Solved?

  • Thread starter Thread starter matyw
  • Start date Start date
matyw
Messages
2
Reaction score
0
Hi all

Can someone answer these equations??

1. find the value of sin(A+B) when sin A = 1/2 and cos B = 3/8

2. solve the equation: 2 - 2 sinx = cos²X when -180° < X < 180°

3. solve rquation for X: 2 tan°X + 2 sec°X - sec X = 12

any help would be great
Cheers
Mat
 
Mathematics news on Phys.org
Hello matyw and welcome to MHB! :D

As these are trigonometry questions I've moved your thread into the Trigonometry forum.

Also, we ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
greg1313 said:
Hello matyw and welcome to MHB! :D

As these are trigonometry questions I've moved your thread into the Trigonometry forum.

Also, we ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?

Hi Greg

I actually don't know where to start hence why i have posted the equations in full.
My thoughts were to see the answers in full working order, so i could work backwards to see the processes people take to come up with a result. It is hard to be teaching yourself especially when you have no idea of what the results are meant to be
My apologies, i do understand if i don't get help with this.

Regards
Mat
 
These questions assume some background knowledge of trigonometry, specifically (for question 1)

$$\sin(A+B)=\sin(A)\cos(B)+\sin(B)\cos(A)$$

and

$$\sin(B)=\pm\sqrt{1-\cos^2(B)},\quad\cos(A)=\pm\sqrt{1-\sin^2(A)}$$

Working with angles in the first quadrant (do you know what the first quadrant is?), can you now solve question 1?

It's somewhat difficult to post good help without knowing what trigonometry you are familiar with. Can you post a brief summary of your trigonometry knowledge?
 
It's been a while and the OP has not responded so I'll post some work.

matyw said:
1. Find the value of sin(A+B) when sin A = 1/2 and cos B = 3/8.

Assuming $A$ and $B$ are in quadrant I,

$$\sin(B)=\sqrt{1-\dfrac{9}{64}}=\dfrac{\sqrt{55}}{8}\quad\cos(A)=\sqrt{1-\dfrac14}=\dfrac{\sqrt3}{2}$$

$$\sin(A+B)=\sin(A)\cos(B)+\sin(B)\cos(A)$$

$$=\dfrac12\cdot\dfrac38+\dfrac{\sqrt{55}}{8}\cdot\dfrac{\sqrt3}{2}=\dfrac{3}{16}+\dfrac{\sqrt{165}}{16}=\dfrac{1}{16}\left(3+\sqrt{165}\right)$$

matyw said:
2. Solve the equation 2 - 2 sinx = cos²X when -180° < X < 180°

$$2-2\sin(x)=\cos^2(x)$$

$$2-2\sin(x)=1-\sin^2(x)$$

$$\sin^2(x)-2\sin(x)+1=0$$

$$(\sin(x)-1)^2=0$$

$$\Rightarrow\sin(x)=1,\quad x=90^\circ$$

matyw said:
3. solve rquation for X: 2 tan°X + 2 sec°X - sec X = 12

I'm going to assume this is $2\tan^2(x)+2\sec^2(x)-\sec(x)=12$:

$$2\tan^2(x)+2\sec^2(x)-\sec(x)=12$$

$$2(\sec^2(x)-1)+2\sec^2(x)-\sec(x)-12=0$$

$$4\sec^2(x)-\sec(x)-14=0$$

$$(4\sec(x)+7)(\sec(x)-2)=0$$

$$x=\cos^{-1}\left(-\dfrac47\right),\quad x=\cos^{-1}\left(\dfrac12\right)$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top