MHB How can we compute the Galois group of a subgroup of a splitting field?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Group Subgroup
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\rho=\sqrt[3]{\frac{1+\sqrt{5}}{2}}$.
We have that $\rho$ is a root of $f(x)=x^6-x^3-1\in \mathbb{Q}[x]$, that is irreducible over $\mathbb{Q}$.
We have that all the roots of $f(x)$ are $\rho, \omega\rho, \omega^2\rho, -\frac{1}{\rho}, -\frac{\omega}{\rho}, -\frac{\omega^2}{\rho}$, where $\omega$ is the cubic root of $1$, $\omega\neq 1$ ($\omega^2+\omega+1=0$).
We have that the splitting field of $f(x)$ over $\mathbb{Q}$ is $L=\mathbb{Q}[\rho, \omega]$.
There are automorphisms $\sigma, \tau\in \mathcal{G}(L/\mathbb{Q})$ such that $\sigma (\rho)=-\frac{\omega}{\rho}, \sigma (\omega)=\omega^2, \tau (\rho)\rho, \tau (\omega)=\omega^2$. We have that the order of $\sigma$ is $6$ and the order of $\tau$ is $2$ and that $\tau\sigma=\sigma^5\tau$. So, $\mathcal{G}(L/\mathbb{Q})\cong D_6$.

Let $E$ be an intermediate extension of $L/\mathbb{Q}$ with $E\neq \mathbb{Q}, L$.
($\mathbb{Q}\subset E\subset L$)

We have the following:
  1. The generator of $E$ is $\omega$, the minimal polynomial of the generator is $x^2+x+1$ and $\mathcal{G}(L/E)=\langle \sigma^2, \sigma\tau\rangle$.

    How have we found that $\mathcal{G}(L/E)=\langle \sigma^2, \sigma\tau\rangle$ ? (Wondering)
    One of the automorphisms of $\mathcal{G}(L/E)$ is the identity $id_L$.

    It holds that $[E:\mathbb{Q}]=\deg (x^2+x+1)=2$, right? (Wondering)
  2. The generator of $E$ is $\theta=1+\rho-\rho^4+\omega(\rho+\rho^2-\rho^4)$, the minimal polynomial of the generator is $x^3-3x^2-1$ and $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$.
    How have we found that $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$ ? (Wondering)
    Also how can we compute $[E:\mathbb{Q}]$ without using the minimal polynomial? Maybe with the Theorem of Galois Theory that $\mathcal{G}(E/\mathbb{Q})\cong \mathcal{G}(L/E)/ \mathcal{G}(L/\mathbb{Q})$ and so $[E:\mathbb{Q}]=|\mathcal{G}(E/\mathbb{Q})|=\frac{|\mathcal{G}(L/E)|}{|\mathcal{G}(L/\mathbb{Q})|}$ ?
    We have that $|\mathcal{G}(L/\mathbb{Q})|=12$ and to find $|\mathcal{G}(L/E)|$ we have to find all the elements, or not?
    $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle=\{\sigma^3, \sigma^6=id, \sigma^2\tau, (\sigma^2\tau)(\sigma^2\tau)=\dots=id\}=\{id, \sigma^3, \sigma^2\tau\}$
    So, $|\mathcal{G}(L/E)|=3$ and so $[E:\mathbb{Q}]=\frac{3}{12}=\frac{1}{4}$ ? That is wrong, isn't it? (Wondering)
 
Physics news on Phys.org
At the second case since $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$, it must hold that $\sigma^3 (1-\rho^2+\omega(-\rho-\rho^2+\rho^4))=1-\rho^2+\omega(-\rho-\rho^2+\rho^4)$ and $\sigma\tau (1-\rho^2+\omega(-\rho-\rho^2+\rho^4))=1-\rho^2+\omega(-\rho-\rho^2+\rho^4)$.

We have that and $\sigma^3(\rho)=\rho^2-\rho^5$, $\sigma^3(\omega)=\omega^2$ and $\sigma^2\tau(\rho)=\omega\rho$, $\sigma^2\tau(\omega)=\omega$, right?

I tried to prove the above relations:

$$\begin{align*}\sigma^3\left (1+\rho^2+\omega(\rho+\rho^2-\rho^4)\right )&=1+\left (\sigma^3 (\rho)\right )^2+\sigma^3(\omega)\left (\sigma^3 (\rho)+\left ( \sigma^3(\rho)\right) ^2-\left (\sigma^3(\rho)\right )^4\right ) \\ &=1+\left (\rho^2-\rho^5\right )^2+\omega^2\left ((\rho^2-\rho^5)+\left ( \rho^2-\rho^5\right )^2-\left (\rho^2-\rho^5\right )^4\right ) \\ & =1+\left (\rho^2-\rho^5\right )^2+\omega^2(\rho^2-\rho^5)\left (1+\left ( \rho^2-\rho^5\right )-\left (\rho^2-\rho^5\right )^3\right )
\\ \sigma^2\tau \left (1+\rho^2+\omega(\rho+\rho^2-\rho^4)\right )&=1+\left (\sigma^2\tau (\rho)\right )^2+\sigma^2\tau (\omega)\left (\sigma^2\tau (\rho)+\left ( \sigma^2\tau (\rho)\right) ^2-\left (\sigma^2\tau (\rho)\right )^4\right ) \\ &=1+\left (\omega\rho\right )^2+\omega\left (\omega\rho+\left (\omega\rho\right) ^2-\left (\omega\rho\right )^4\right ) \\ &=1+\omega^2\rho^2+\omega\left (\omega\rho+\omega^2\rho^2-\omega^4\rho^4\right ) \\ &=1+\omega^2\rho^2+\omega\left (\omega\rho+\omega^2\rho^2-\omega\rho^4\right ) \\ &= 1+\omega^2\rho^2+\omega^2\rho+\omega^3\rho^2-\omega^2\rho^4 \\ &=1+\omega^2\rho^2+\omega^2\rho+\rho^2-\omega^2\rho^4 \\ &=1+\rho^2+\omega^2 (\rho^2+\rho-\rho^4)\end{align*} $$

How could we continue at the first relation to get the desired result? (Wondering)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
3
Views
2K
Replies
9
Views
12K
Replies
4
Views
37
Replies
0
Views
2K
Replies
24
Views
4K
Back
Top