MHB How can we compute the Galois group of a subgroup of a splitting field?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Group Subgroup
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\rho=\sqrt[3]{\frac{1+\sqrt{5}}{2}}$.
We have that $\rho$ is a root of $f(x)=x^6-x^3-1\in \mathbb{Q}[x]$, that is irreducible over $\mathbb{Q}$.
We have that all the roots of $f(x)$ are $\rho, \omega\rho, \omega^2\rho, -\frac{1}{\rho}, -\frac{\omega}{\rho}, -\frac{\omega^2}{\rho}$, where $\omega$ is the cubic root of $1$, $\omega\neq 1$ ($\omega^2+\omega+1=0$).
We have that the splitting field of $f(x)$ over $\mathbb{Q}$ is $L=\mathbb{Q}[\rho, \omega]$.
There are automorphisms $\sigma, \tau\in \mathcal{G}(L/\mathbb{Q})$ such that $\sigma (\rho)=-\frac{\omega}{\rho}, \sigma (\omega)=\omega^2, \tau (\rho)\rho, \tau (\omega)=\omega^2$. We have that the order of $\sigma$ is $6$ and the order of $\tau$ is $2$ and that $\tau\sigma=\sigma^5\tau$. So, $\mathcal{G}(L/\mathbb{Q})\cong D_6$.

Let $E$ be an intermediate extension of $L/\mathbb{Q}$ with $E\neq \mathbb{Q}, L$.
($\mathbb{Q}\subset E\subset L$)

We have the following:
  1. The generator of $E$ is $\omega$, the minimal polynomial of the generator is $x^2+x+1$ and $\mathcal{G}(L/E)=\langle \sigma^2, \sigma\tau\rangle$.

    How have we found that $\mathcal{G}(L/E)=\langle \sigma^2, \sigma\tau\rangle$ ? (Wondering)
    One of the automorphisms of $\mathcal{G}(L/E)$ is the identity $id_L$.

    It holds that $[E:\mathbb{Q}]=\deg (x^2+x+1)=2$, right? (Wondering)
  2. The generator of $E$ is $\theta=1+\rho-\rho^4+\omega(\rho+\rho^2-\rho^4)$, the minimal polynomial of the generator is $x^3-3x^2-1$ and $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$.
    How have we found that $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$ ? (Wondering)
    Also how can we compute $[E:\mathbb{Q}]$ without using the minimal polynomial? Maybe with the Theorem of Galois Theory that $\mathcal{G}(E/\mathbb{Q})\cong \mathcal{G}(L/E)/ \mathcal{G}(L/\mathbb{Q})$ and so $[E:\mathbb{Q}]=|\mathcal{G}(E/\mathbb{Q})|=\frac{|\mathcal{G}(L/E)|}{|\mathcal{G}(L/\mathbb{Q})|}$ ?
    We have that $|\mathcal{G}(L/\mathbb{Q})|=12$ and to find $|\mathcal{G}(L/E)|$ we have to find all the elements, or not?
    $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle=\{\sigma^3, \sigma^6=id, \sigma^2\tau, (\sigma^2\tau)(\sigma^2\tau)=\dots=id\}=\{id, \sigma^3, \sigma^2\tau\}$
    So, $|\mathcal{G}(L/E)|=3$ and so $[E:\mathbb{Q}]=\frac{3}{12}=\frac{1}{4}$ ? That is wrong, isn't it? (Wondering)
 
Physics news on Phys.org
At the second case since $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$, it must hold that $\sigma^3 (1-\rho^2+\omega(-\rho-\rho^2+\rho^4))=1-\rho^2+\omega(-\rho-\rho^2+\rho^4)$ and $\sigma\tau (1-\rho^2+\omega(-\rho-\rho^2+\rho^4))=1-\rho^2+\omega(-\rho-\rho^2+\rho^4)$.

We have that and $\sigma^3(\rho)=\rho^2-\rho^5$, $\sigma^3(\omega)=\omega^2$ and $\sigma^2\tau(\rho)=\omega\rho$, $\sigma^2\tau(\omega)=\omega$, right?

I tried to prove the above relations:

$$\begin{align*}\sigma^3\left (1+\rho^2+\omega(\rho+\rho^2-\rho^4)\right )&=1+\left (\sigma^3 (\rho)\right )^2+\sigma^3(\omega)\left (\sigma^3 (\rho)+\left ( \sigma^3(\rho)\right) ^2-\left (\sigma^3(\rho)\right )^4\right ) \\ &=1+\left (\rho^2-\rho^5\right )^2+\omega^2\left ((\rho^2-\rho^5)+\left ( \rho^2-\rho^5\right )^2-\left (\rho^2-\rho^5\right )^4\right ) \\ & =1+\left (\rho^2-\rho^5\right )^2+\omega^2(\rho^2-\rho^5)\left (1+\left ( \rho^2-\rho^5\right )-\left (\rho^2-\rho^5\right )^3\right )
\\ \sigma^2\tau \left (1+\rho^2+\omega(\rho+\rho^2-\rho^4)\right )&=1+\left (\sigma^2\tau (\rho)\right )^2+\sigma^2\tau (\omega)\left (\sigma^2\tau (\rho)+\left ( \sigma^2\tau (\rho)\right) ^2-\left (\sigma^2\tau (\rho)\right )^4\right ) \\ &=1+\left (\omega\rho\right )^2+\omega\left (\omega\rho+\left (\omega\rho\right) ^2-\left (\omega\rho\right )^4\right ) \\ &=1+\omega^2\rho^2+\omega\left (\omega\rho+\omega^2\rho^2-\omega^4\rho^4\right ) \\ &=1+\omega^2\rho^2+\omega\left (\omega\rho+\omega^2\rho^2-\omega\rho^4\right ) \\ &= 1+\omega^2\rho^2+\omega^2\rho+\omega^3\rho^2-\omega^2\rho^4 \\ &=1+\omega^2\rho^2+\omega^2\rho+\rho^2-\omega^2\rho^4 \\ &=1+\rho^2+\omega^2 (\rho^2+\rho-\rho^4)\end{align*} $$

How could we continue at the first relation to get the desired result? (Wondering)
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
12K
  • · Replies 4 ·
Replies
4
Views
349
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
675
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K