How Can We Integrate This Complex Logarithmic Function?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Log
Click For Summary
SUMMARY

The forum discussion focuses on integrating the complex logarithmic function represented by the integral $$I=\int_0^{\ln\left({10}\right)}\frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+8} \ dx$$. Participants explored various substitution methods, including $u = e^{x}-1$ and $u = e^{x}+8$, to simplify the integral. The final solution derived from the integration process is $$I = \frac{3(4 - \pi)}{2}$$, demonstrating the effectiveness of trigonometric substitution in solving the integral.

PREREQUISITES
  • Understanding of integral calculus, specifically techniques for integration.
  • Familiarity with substitution methods in calculus.
  • Knowledge of trigonometric identities and functions.
  • Experience with logarithmic functions and their properties.
NEXT STEPS
  • Study advanced integration techniques, including trigonometric substitution.
  • Learn about the properties of logarithmic functions in calculus.
  • Explore the use of numerical methods for evaluating complex integrals.
  • Investigate the application of integrals in real-world scenarios, such as physics and engineering.
USEFUL FOR

Mathematicians, calculus students, educators, and anyone interested in advanced integration techniques and their applications in various fields.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {7.R.31} Integral log }$
$$\displaystyle
I=\int_0^{\ln\left({10}\right)}
\frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+8}
\ dx \\

\begin{align}\displaystyle
u& = e^{x}-1 &
du&= e^{x} \ d{x} \\
\end{align} \\

I=\int_0^{\ln\left({10}\right)}
\frac{\sqrt{u}}{u+9}
\ du $$
Couldn't get this to integrate 🐮

$\tiny\text
{from Surf the Nations math study group}$
🏄🌴🏄🌴🏄
 
Last edited:
Physics news on Phys.org
karush said:
$\tiny\text{LCC 206 {7.R.31} Integral log }$
$$\displaystyle
I=\int_0^{\ln\left({10}\right)}
\frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+8}
\ dx \\

\begin{align}\displaystyle
u& = e^{x}-1 &
du&= e^{x} \ d{x} \\
\end{align} \\

I=\int_0^{\ln\left({10}\right)}
\frac{\sqrt{u}}{u+9}
\ du $$
Couldn't get this to integrate 🐮

$\tiny\text
{from Surf the Nations math study group}$
🏄🌴🏄🌴🏄

I would have gone with the substitution $\displaystyle \begin{align*} u = \mathrm{e}^x + 8 \implies \mathrm{d}u = \mathrm{e}^x\,\mathrm{d}x \end{align*}$, notice that $\displaystyle \begin{align*} u(0) = 9 \end{align*}$ and $\displaystyle \begin{align*} u\,\left( \ln{(10)} \right) = 18 \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_0^{\ln{(10)}}{\frac{\mathrm{e}^x\,\sqrt{ \mathrm{e}^x - 1 }}{\mathrm{e}^x + 8} \,\mathrm{d}x} &= \int_9^{18}{ \frac{\sqrt{u - 9}}{u}\,\mathrm{d}u } \\ &= 2\int_9^{18}{ \frac{u - 9}{2\,u\,\sqrt{u - 9}}\,\mathrm{d}u } \end{align*}$

Now let $\displaystyle \begin{align*} v = \sqrt{u - 9} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u - 9}}\,\mathrm{d}u \end{align*}$ and note that $\displaystyle \begin{align*} v(9) = 0 \end{align*}$ and $\displaystyle \begin{align*} v(18) = 3 \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} 2\int_9^{18}{\frac{u-9}{2\,u\,\sqrt{u - 9}}\,\mathrm{d}u} &= 2 \int_0^3{ \frac{v^2}{ v^2 + 9 } \, \mathrm{d}v } \end{align*}$

Now let $\displaystyle \begin{align*} v = 3\tan{ \left( \theta \right) } \implies \mathrm{d}v = 3\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$ and note that when $\displaystyle \begin{align*} v = 0 , \, \theta = 0 \end{align*}$ and when $\displaystyle \begin{align*} v = 3, \, \theta = \frac{\pi}{4} \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} 2\int_0^3{ \frac{v^2}{v^2 + 9}\,\mathrm{d}v } &= 2\int_0^{\frac{\pi}{4}}{ \frac{\left[ 3\tan{ \left( \theta \right) } \right] ^2 }{ \left[ 3\tan{ \left( \theta \right) } \right] ^2 + 9 }\, 3\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= 6\int_0^{\frac{\pi}{4}}{ \frac{9\tan^2{ \left( \theta \right) }\sec^2{\left( \theta \right) } }{ 9\sec^2{ \left( \theta \right) } }\, \mathrm{d}\theta } \\ &= 6\int_0^{\frac{\pi}{4}}{ \tan^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= 6 \int_0^{\frac{\pi}{4}}{ \left[ \sec^2{ \left( \theta \right) } - 1 \right] \,\mathrm{d}\theta } \\ &= 6 \, \left[ \tan{ \left( \theta \right) } - \theta \right] _0^{\frac{\pi}{4}} \\ &= 6\,\left\{ \left[ \tan{ \left( \frac{\pi}{4} \right) } - \frac{\pi}{4} \right] - \left[ \tan{ \left( 0 \right) } - 0 \right] \right\} \\ &= 6 \,\left( 1 - \frac{\pi}{4} \right) \\ &= \frac{6\,\left( 4 - \pi \right) }{4} \\ &= \frac{3\,\left( 4 - \pi \right) }{2} \end{align*}$
 
$\tiny\text{LCC 206 {7.R.31} Integral log }$

OK I continued with my original but yours was easier🐮
$$\displaystyle
I=\int_0^{\ln\left({10}\right)}
\frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+8}
\ dx \\

\begin{align}\displaystyle
u& = e^{x}-1 &
du&= e^{x} \ d{x} \\
\end{align}
\\
I=\int_0^{9}
\frac{\sqrt{u}}{u+9} \ du $$
\begin{align}\displaystyle
u& = 9\tan^2 \left({w}\right) &
du&= \frac{18\sin\left({w}\right)}
{\cos^3 \left({w}\right)} \ d{w} \\
\end{align}

$6\int_0^{\pi/4}\tan^2 \left({w}\right) \ dw =\left[-6-\tan\left({w}\right)\right]_0^{\pi /4 }
6-\frac{3 \pi}{2}+C$ $\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K