How Can We Prove \(a+b^2+c^3+d^4 \le a^2+b^3+c^4+d^5\) Given \(a+b+c+d=4\)?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The inequality \(a+b^2+c^3+d^4 \le a^2+b^3+c^4+d^5\) holds for non-negative real numbers \(a, b, c, d\) constrained by \(a+b+c+d=4\). The proof leverages the properties of convex functions and the application of the Cauchy-Schwarz inequality. Participants confirmed the validity of the proof provided by Albert, emphasizing the importance of non-negativity in the variables.

PREREQUISITES
  • Understanding of inequalities in real analysis
  • Familiarity with the Cauchy-Schwarz inequality
  • Knowledge of convex functions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the Cauchy-Schwarz inequality in detail
  • Explore properties of convex functions and their applications
  • Review techniques for proving inequalities in real analysis
  • Investigate other inequalities related to symmetric sums
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in advanced inequality proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ and $d$ be non-negative and suppose that $a+b+c+d=4$. Show that

$a+b^2+c^3+d^4\le a^2+b^3+c^4+d^5$
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,c$ and $d$ be non-negative and suppose that $a+b+c+d=4$. Show that$a+b^2+c^3+d^4\le a^2+b^3+c^4+d^5$
if $a=b=c=d=1 $ ,then $a+b^2+c^3+d^4= a^2+b^3+c^4+d^5=a+b+c+d=4$
now we only have to prove : $a^2+b^3+c^4+d^5- a -b^2 -c^3 - d^4\geq 0$
or :$a(a-1)+b^2(b-1)+c^3(c-1)+d^4(d-1)\geq 0 ----(1)$
if $a<1, b<1,c<1$ then $d>1$
we have: $(1)>(a-1)+(b-1)+(c-1)+d^4(d-1)=1-d+d^4(d-1)=(d-1)(d^4-1)>0$
for other situations the proof is similar, and the proof is done
 
Thanks for participating, Albert! Yes, your proof is correct! :)

Suggested solution of other:

We want to show that

$a^2+b^3+c^4+d^5-(a+b^2+c^3+d^4)\ge 0$

The LHS of the inequality is equivalent to

$a(a-1)+b^2(b-1)+c^3(c-1)+d^4(d-1)$

And we want to show it is non-negative.

But observe that

$d^4(d-1)-(d-1)=(d^4-1)(d-1)=(d-1)^2(d^3+d^2+d+1)\ge 0$

Thus,

$d^4(d-1)\ge (d-1)$

Similarly, we have $c^3(c-1)\ge (c-1)$, b^2(b-1)\ge (b-1)$ and a(a-1)\ge (a-1)$.

We conclude therefore that

$a(a-1)+b^2(b-1)+c^3(c-1)+d^4(d-1)\ge (a-1)+ (b-1)+ (c-1)+ (d-1)=0$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K