How can we prove $|Cx^2+Bx+A|\le 2$ for the given condition?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The inequality $|Cx^2 + Bx + A| \leq 2$ is proven for real numbers $A, B, C$ under the condition that $|Ax^2 + Bx + C| \leq 1$ for $-1 \leq x \leq 1$. The proof utilizes the functions $f(x) = Ax^2 + Bx + C$ and $g(x) = Cx^2 + Bx + A$, demonstrating that if $g(x)$ exceeds 2, it leads to a contradiction based on the behavior of the derivatives and the bounds of $C$. The conclusion is that $|g(x)| \leq 2$ for the specified range of $x$, with the example $f(x) = 2x^2 - 1$ illustrating that the maximum value of 2 is achievable.

PREREQUISITES
  • Understanding of polynomial functions and their properties
  • Knowledge of inequalities and absolute values
  • Familiarity with calculus concepts such as derivatives
  • Experience with real analysis, particularly in bounding functions
NEXT STEPS
  • Study the properties of polynomial functions and their behavior over closed intervals
  • Learn about the Mean Value Theorem and its applications in proving inequalities
  • Explore advanced topics in real analysis, focusing on function continuity and limits
  • Investigate other inequalities involving polynomials, such as Chebyshev's inequality
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in polynomial inequalities and their proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The real numbers $A,\,B,\,C$ satisfy the condition such that for $-1\le x\le 1$, the inequality $|Ax^2+Bx+C|\le 1$ holds.

Prove that $|Cx^2+Bx+A|\le 2$ for the same $x$.
 
Mathematics news on Phys.org
anemone said:
The real numbers $A,\,B,\,C$ satisfy the condition such that for $-1\le x\le 1$, the inequality $|Ax^2+Bx+C|\le 1$ holds.

Prove that $|Cx^2+Bx+A|\le 2$ for the same $x$.
let :$f(x)=Ax^2+Bx+C,\,\,\,g(x)=Cx^2+Bx+A$
then we have :$-1\leq f(0)=C\leq 1----(1)$
$-1\leq f(1)=A+B+C\leq 1---(2)$
$-1\leq f(-1)=A-B+C\leq 1---(3)$
now $-2<-1\leq g(1)=C+B+A=A+B+C\leq 1<2---(4)$
$-2<-1\leq g(-1)=C-B+A=A-B+C\leq 1<2---(5)$
as for the domain of $A$: to satisfy $|Cx^2+Bx+A|\le 2$
we get: $-2\leq g(0)=A\le 2$
for one case :$f(x)=2x^2-1,\,\,\, g(x)=-x^2+2$
 
Last edited:
[sp]I'll use Albert's notation $f(x) = Ax^2 + Bx + C$, $g(x) = Cx^2 + Bx + A$. Notice that $g(-1) = f(-1) = A-B+C$ and $g(1) = f(1) = A+B+C$. Therefore $|g(-1)| \leqslant 1$ and $|g(1)| \leqslant 1.$ Also, $C = f(0)$ and so $|C| \leqslant 1$.

Suppose that for some $x$ with $-1< x< 1$, $g(x) >2$. Then $g(x) - g(1) > 2-1 = 1$, so that $\dfrac{g(x) - g(1)}{1-x} > \dfrac1{1-x}.$ Similarly, $g(x) - g(-1) >1$ so that $\dfrac{g(x) - g(-1)}{1+x} > \dfrac1{1+x}.$ Therefore $$\dfrac{g(x) - g(1)}{1-x} + \dfrac{g(x) - g(-1)}{1+x} > \dfrac1{1-x} + \dfrac1{1+x} = \dfrac2{1-x^2} >2.$$
On the other hand, $g(x) - g(1) = Cx^2 + Bx + A - (C+B+A) = C(x^2-1) + B(x-1)$, so that $\dfrac{g(x) - g(1)}{1-x} = -C(x+1) - B.$

Similarly, $g(x) - g(-1) = C(x^2-1) + B(x+1)$, so that $\dfrac{g(x) - g(-1)}{1+x} = C(x-1) + B.$

Therefore $\dfrac{g(x) - g(1)}{1-x} + \dfrac{g(x) - g(-1)}{1+x} = -2C \leqslant 2$ (because $|C|\leqslant 1).$ That contradicts the previous inequality and shows that $g(x)$ can never be greater than $2$.

A similar argument (with most of the signs changed) shows that $g(x)$ can never be less than $-2$. In conclusion, $|g(x)| \leqslant 2$ whenever $-1\leqslant x\leqslant 1.$

Albert's example $f(x) = 2x^2-1$ shows that $|g(x)|$ can attain the value $2$, so $2$ is the best possible constant in this result.

The basic idea in the above proof is that the constant $C$ controls the curvature of the function $g$. Since $|C|\leqslant 1$, the curve cannot bend too quickly. If $g(x)$ takes a value $\leqslant 1$ when $x=-1$, then increases to a value greater than $2$ (at some point $x$) then it cannot bend round sharply enough to get back down to a value $\leqslant 1$ by the time that $x=1$.[/sp]
 
Albert said:
let :$f(x)=Ax^2+Bx+C,\,\,\,g(x)=Cx^2+Bx+A$
then we have :$-1\leq f(0)=C\leq 1----(1)$
$-1\leq f(1)=A+B+C\leq 1---(2)$
$-1\leq f(-1)=A-B+C\leq 1---(3)$
now $-2<-1\leq g(1)=C+B+A=A+B+C\leq 1<2---(4)$
$-2<-1\leq g(-1)=C-B+A=A-B+C\leq 1<2---(5)$
as for the domain of $A$: to satisfy $|Cx^2+Bx+A|\le 2$
we get: $-2\leq g(0)=A\le 2$
for one case :$f(x)=2x^2-1,\,\,\, g(x)=-x^2+2$
another proof for $-2\leq A\leq 2$
$-1\leq A+B+C\leq 1---(1)$
$-1\leq A-B+C\leq 1---(2)$
$-1\leq C\leq 1---(3)$
$(1)+(2)$ we have :
$-1\leq A+C\leq 1---(4)$
fom $(3),(4)$
$A-1\leq A+C\leq 1, \rightarrow A\leq 2$
$-1\leq A+C\leq A+1,\rightarrow -2\leq A$
 
Last edited:
Thank you Albert and Opalg for participating in this challenge problem!

Another solution of other that I wish to share with MHB:

Using also Albert's notation, we have

$|A+B+C|=|f(1)|\le 1$, $|A-B+C|=|f(-1)|\le 1$ and $|C|=|f(0)|<1$

Hence,

$\begin{align*}|g(x)|&=\left|C\cdot(x^2-1)+(A+B+C)\cdot\left(\dfrac{1+x}{2}\right)+(A-B+C)\cdot\left(\dfrac{1-x}{2}\right)\right|\\&\le |x^2-1|+\dfrac{|1+x|}{2}+\dfrac{|1-x|}{2}\\&=1-x^2+\dfrac{1+x}{2}+\dfrac{1-x}{2}\\&=2-x^2\\&\le 2\end{align*}$

for $-1\le x\le 1$, and we're done.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K