How can we prove $|Cx^2+Bx+A|\le 2$ for the given condition?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality $|Cx^2 + Bx + A| \le 2$ given that $|Ax^2 + Bx + C| \le 1$ for $-1 \le x \le 1$. The focus is on mathematical reasoning and proof techniques related to polynomial inequalities.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants define the polynomials as $f(x) = Ax^2 + Bx + C$ and $g(x) = Cx^2 + Bx + A$, noting that $g(-1) = f(-1)$ and $g(1) = f(1)$, leading to bounds on $g(-1)$ and $g(1)$.
  • One participant argues that if $g(x) > 2$ for some $x$ in the interval $(-1, 1)$, it leads to a contradiction based on the behavior of the derivatives and the values at the endpoints.
  • Another participant mentions that a similar argument can be made to show that $g(x)$ cannot be less than $-2$, reinforcing the bounds on $g(x)$.
  • A participant references an example where $f(x) = 2x^2 - 1$ demonstrates that $|g(x)|$ can reach the value of $2$, suggesting that this is the best possible constant for the inequality.
  • There is a brief mention of another proof related to the bounds on $A$ but without elaboration on its relevance to the main discussion.

Areas of Agreement / Disagreement

Participants generally agree on the approach to proving the inequality, but there are multiple viewpoints on the methods and implications of the proofs presented. The discussion remains unresolved regarding the completeness of the proofs and the implications of the bounds on $A$.

Contextual Notes

Some assumptions about the behavior of polynomials and their derivatives are made, but these are not fully explored or resolved within the discussion. The implications of the bounds on $C$ and the curvature of the polynomial are also noted but not definitively concluded.

Who May Find This Useful

Readers interested in polynomial inequalities, mathematical proofs, and advanced algebraic techniques may find this discussion beneficial.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The real numbers $A,\,B,\,C$ satisfy the condition such that for $-1\le x\le 1$, the inequality $|Ax^2+Bx+C|\le 1$ holds.

Prove that $|Cx^2+Bx+A|\le 2$ for the same $x$.
 
Mathematics news on Phys.org
anemone said:
The real numbers $A,\,B,\,C$ satisfy the condition such that for $-1\le x\le 1$, the inequality $|Ax^2+Bx+C|\le 1$ holds.

Prove that $|Cx^2+Bx+A|\le 2$ for the same $x$.
let :$f(x)=Ax^2+Bx+C,\,\,\,g(x)=Cx^2+Bx+A$
then we have :$-1\leq f(0)=C\leq 1----(1)$
$-1\leq f(1)=A+B+C\leq 1---(2)$
$-1\leq f(-1)=A-B+C\leq 1---(3)$
now $-2<-1\leq g(1)=C+B+A=A+B+C\leq 1<2---(4)$
$-2<-1\leq g(-1)=C-B+A=A-B+C\leq 1<2---(5)$
as for the domain of $A$: to satisfy $|Cx^2+Bx+A|\le 2$
we get: $-2\leq g(0)=A\le 2$
for one case :$f(x)=2x^2-1,\,\,\, g(x)=-x^2+2$
 
Last edited:
[sp]I'll use Albert's notation $f(x) = Ax^2 + Bx + C$, $g(x) = Cx^2 + Bx + A$. Notice that $g(-1) = f(-1) = A-B+C$ and $g(1) = f(1) = A+B+C$. Therefore $|g(-1)| \leqslant 1$ and $|g(1)| \leqslant 1.$ Also, $C = f(0)$ and so $|C| \leqslant 1$.

Suppose that for some $x$ with $-1< x< 1$, $g(x) >2$. Then $g(x) - g(1) > 2-1 = 1$, so that $\dfrac{g(x) - g(1)}{1-x} > \dfrac1{1-x}.$ Similarly, $g(x) - g(-1) >1$ so that $\dfrac{g(x) - g(-1)}{1+x} > \dfrac1{1+x}.$ Therefore $$\dfrac{g(x) - g(1)}{1-x} + \dfrac{g(x) - g(-1)}{1+x} > \dfrac1{1-x} + \dfrac1{1+x} = \dfrac2{1-x^2} >2.$$
On the other hand, $g(x) - g(1) = Cx^2 + Bx + A - (C+B+A) = C(x^2-1) + B(x-1)$, so that $\dfrac{g(x) - g(1)}{1-x} = -C(x+1) - B.$

Similarly, $g(x) - g(-1) = C(x^2-1) + B(x+1)$, so that $\dfrac{g(x) - g(-1)}{1+x} = C(x-1) + B.$

Therefore $\dfrac{g(x) - g(1)}{1-x} + \dfrac{g(x) - g(-1)}{1+x} = -2C \leqslant 2$ (because $|C|\leqslant 1).$ That contradicts the previous inequality and shows that $g(x)$ can never be greater than $2$.

A similar argument (with most of the signs changed) shows that $g(x)$ can never be less than $-2$. In conclusion, $|g(x)| \leqslant 2$ whenever $-1\leqslant x\leqslant 1.$

Albert's example $f(x) = 2x^2-1$ shows that $|g(x)|$ can attain the value $2$, so $2$ is the best possible constant in this result.

The basic idea in the above proof is that the constant $C$ controls the curvature of the function $g$. Since $|C|\leqslant 1$, the curve cannot bend too quickly. If $g(x)$ takes a value $\leqslant 1$ when $x=-1$, then increases to a value greater than $2$ (at some point $x$) then it cannot bend round sharply enough to get back down to a value $\leqslant 1$ by the time that $x=1$.[/sp]
 
Albert said:
let :$f(x)=Ax^2+Bx+C,\,\,\,g(x)=Cx^2+Bx+A$
then we have :$-1\leq f(0)=C\leq 1----(1)$
$-1\leq f(1)=A+B+C\leq 1---(2)$
$-1\leq f(-1)=A-B+C\leq 1---(3)$
now $-2<-1\leq g(1)=C+B+A=A+B+C\leq 1<2---(4)$
$-2<-1\leq g(-1)=C-B+A=A-B+C\leq 1<2---(5)$
as for the domain of $A$: to satisfy $|Cx^2+Bx+A|\le 2$
we get: $-2\leq g(0)=A\le 2$
for one case :$f(x)=2x^2-1,\,\,\, g(x)=-x^2+2$
another proof for $-2\leq A\leq 2$
$-1\leq A+B+C\leq 1---(1)$
$-1\leq A-B+C\leq 1---(2)$
$-1\leq C\leq 1---(3)$
$(1)+(2)$ we have :
$-1\leq A+C\leq 1---(4)$
fom $(3),(4)$
$A-1\leq A+C\leq 1, \rightarrow A\leq 2$
$-1\leq A+C\leq A+1,\rightarrow -2\leq A$
 
Last edited:
Thank you Albert and Opalg for participating in this challenge problem!

Another solution of other that I wish to share with MHB:

Using also Albert's notation, we have

$|A+B+C|=|f(1)|\le 1$, $|A-B+C|=|f(-1)|\le 1$ and $|C|=|f(0)|<1$

Hence,

$\begin{align*}|g(x)|&=\left|C\cdot(x^2-1)+(A+B+C)\cdot\left(\dfrac{1+x}{2}\right)+(A-B+C)\cdot\left(\dfrac{1-x}{2}\right)\right|\\&\le |x^2-1|+\dfrac{|1+x|}{2}+\dfrac{|1-x|}{2}\\&=1-x^2+\dfrac{1+x}{2}+\dfrac{1-x}{2}\\&=2-x^2\\&\le 2\end{align*}$

for $-1\le x\le 1$, and we're done.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K