How can we prove the derivative inequality for f(x)=sin(x)/x?

  • Context: MHB 
  • Thread starter Thread starter Fallen Angel
  • Start date Start date
  • Tags Tags
    Derivative Inequality
Click For Summary
SUMMARY

The discussion focuses on proving the derivative inequality for the function $$f(x)=\dfrac{\sin(x)}{x}$$ for $$x>0$$. Participants demonstrate that for every natural number $$n$$, the absolute value of the n-th derivative $$|f^{(n)}(x)|$$ is less than $$\dfrac{1}{n+1}$$. The proof utilizes Leibniz's formula for derivatives and involves manipulating the expression to show that the left side remains less than the right side through differentiation. The conclusion confirms that the inequality holds for all $$x>0$$.

PREREQUISITES
  • Understanding of calculus, specifically derivatives and their properties.
  • Familiarity with Leibniz's formula for derivatives.
  • Knowledge of complex numbers and their representation in trigonometric functions.
  • Ability to manipulate inequalities and perform differentiation on series.
NEXT STEPS
  • Study the application of Leibniz's formula in more complex functions.
  • Explore the properties of the sine function and its derivatives in detail.
  • Learn about the implications of Taylor series in proving inequalities.
  • Investigate other functions that exhibit similar derivative properties.
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of derivative inequalities and their proofs.

Fallen Angel
Messages
202
Reaction score
0
Hi,

My first challenge was not very popular so I bring you another one.

Let us define $$f(x)=\dfrac{sin(x)}{x}$$ for $$x>0$$.

Prove that for every $$n\in \mathbb{N}$$, $$|f^{(n)}(x)|<\dfrac{1}{n+1}$$ where $$f^{n}(x)$$ denotes the n-th derivative of $$f$$
 
Physics news on Phys.org
Fallen Angel said:
Hi,

My first challenge was not very popular so I bring you another one.

Let us define $$f(x)=\dfrac{\sin(x)}{x}$$ for $$x>0$$.

Prove that for every $$n\in \mathbb{N}$$, $$\bigl|\,f^{(n)}(x)\bigr| < \dfrac{1}{n+1}$$ where $$f^{n}(x)$$ denotes the n-th derivative of $$f$$
[sp]The $n$th derivative of $\dfrac{\sin x}x = x^{-1}\sin x$ is given by Leibniz's formula as $$\sum_{k=0}^n {n\choose k} \frac{d^k}{dx^k}(\sin x)\frac{d^{n-k}}{dx^{n-k}}(x^{-1}).$$

The derivatives of $\sin x$ oscillate between $\pm\sin x$ and $\pm\cos x$. I found it most conveniant to regard $\sin x$ as the imaginary part of $e^{ix}$, so that its $k$th derivative can be written as $\mathrm{Im}\bigl(i^ke^{ix}\bigr)$. The $k$th derivative of $x^{-1}$ is $(-1)^kk!x^{-k-1}.$ So the Leibniz formula becomes $$\frac{d^n}{dx^n}\Bigl(\frac{\sin x}x\Bigr) = \sum_{k=0}^n {n\choose k} \mathrm{Im}\bigl(i^ke^{ix}\bigr) (-1)^{n-k}(n-k)!x^{-n+k-1}.$$ We want to show that the absolute value of this is less than $\dfrac1{n+1}$. After multiplying both sides by $x^{n+1}$ that becomes $$\left| \sum_{k=0}^n {n\choose k} \mathrm{Im}\bigl(i^ke^{ix}\bigr) (-1)^{n-k}(n-k)!x^k \right| <\frac{x^{n+1}}{n+1}.\qquad(*)$$ So we want to show that (*) holds for all $x>0$. Notice that both sides of (*) are zero when $x=0$. The idea will be to differentiate the expression on the left of (*) and show that this is less than the derivative of the right side. That will show that the left side of (*) is always less than the right side. By the product rule, $$\frac d{dx} \sum_{k=0}^n {n\choose k} \mathrm{Im}\bigl(i^ke^{ix}\bigr) (-1)^{n-k}(n-k)!x^k = \sum_{k=0}^n \frac{n!}{k!}(-1)^{n-k}\Bigl( \mathrm{Im}\bigl(i^{k+1}e^{ix}\bigr)x^k + \mathrm{Im}\bigl(i^ke^{ix}\bigr)kx^{k-1} \Bigr).\qquad(**)$$ (When $k=0$ the second term in the big parentheses becomes $0$.) In fact, the right side of (**) is a telescoping sum. For each power of $x$ apart from $x^0$ and $x^n$, the coefficient in the second term in the big parentheses is the negative of the coefficient of the same power of $x$ occurring in the first term in the parentheses. So the only term that survives is the term in $x^n$, namely $\mathrm{Im}\bigl(i^{n+1}e^{ix}\bigr)x^n$. But that is less in absolute value than $ \dfrac d{dx}\Bigl(\dfrac{x^{n+1}}{n+1}\Bigr) = x^n$, just as we wanted.

(Strictly speaking, the absolute value of $\mathrm{Im}\bigl(i^{n+1}e^{ix}\bigr)x^n$ is actually equal to $x^n$ when $x$ is equal to some multiples of $\pi/2$. But that does not affect the argument.)[/sp]
 
Good work Opalg!

My solution is slightly different.

Let us denote $f(x)=\dfrac{sin(x)}{x}=\displaystyle\int_{0}^{1}cos(xt)dt$.
Then $f^{(n)}(x)=\displaystyle\int_{0}^{1}\dfrac{\partial ^{n}}{\partial x^{n}}cos(xt)dt=\displaystyle\int_{0}^{1}t^{n}g_{n}(xt)dt $

Where $g_{n}(xt)=\pm cos(xt), \pm sin(xt)$, but $|g_{n}(xt)|\leq 1$ and the equality holds only for finitely many points. Hence

$|f^{n}(x)|\leq \displaystyle\int_{0}^{1}t^{n}|g_{n}(xt)|dt<\displaystyle\int_{0}^{1}t^{n}dt=\dfrac{1}{n+1}$
 
Fallen Angel said:
Good work Opalg!

My solution is slightly different.

Let us denote $f(x)=\dfrac{sin(x)}{x}=\displaystyle\int_{0}^{1}cos(xt)dt$.
Then $f^{(n)}(x)=\displaystyle\int_{0}^{1}\dfrac{\partial ^{n}}{\partial x^{n}}cos(xt)dt=\displaystyle\int_{0}^{1}t^{n}g_{n}(xt)dt $

Where $g_{n}(xt)=\pm cos(xt), \pm sin(xt)$, but $|g_{n}(xt)|\leq 1$ and the equality holds only for finitely many points. Hence

$|f^{n}(x)|\leq \displaystyle\int_{0}^{1}t^{n}|g_{n}(xt)|dt<\displaystyle\int_{0}^{1}t^{n}dt=\dfrac{1}{n+1}$
Very neat! (Rock)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K