Assume WLOG that $a>0$. Otherwise replace $(a,\,b,\,c)$ with $(-a,\,-b,\,-c)$. This transformation doesn't change $|ax^2+bx+c|$, and it doesn't change $|b^2-4ac|$.
Similarly, assume that $A>0$.
Observe that $$\lim_{{x}\to{\infty}} \dfrac{Ax^2+Bx+C}{x^2}=A$$. Thus, $$\lim_{{x}\to{\infty}} \left|\dfrac{Ax^2+Bx+C}{x^2}\right|=A$$.
Similarly, $$\lim_{{x}\to{\infty}} \left|\dfrac{ax^2+bx+c}{x^2}\right|=a$$. Hence, $a\le A$.
Now, let $d=b^2-4ac$ and $D=B^2-4AC$.
Case I ($D>0$):
Let $r=\dfrac{-B+\sqrt{D}}{2A}$ and $s=\dfrac{-B-\sqrt{D}}{2A}$, then $r\ne s$. If $x\in\{r,\,s\}$, then $Ax^2+Bx+C=0$ so $|ax^2+bx+c|\le |0|$ so $ax^2+bx+c=0$.
Thus, $ax^2+bx+c=a(x-r)(x-s)$ so $d=a^2(r-s)^2=a^2\left(\dfrac{\sqrt{D}}{A}\right)^2=\dfrac{Da^2}{A^2}$.
Hence $0<d\le D$.
Case II ($D=0$):
The functions $Ax^2+Bx+C$ and $-Ax^2-Bx-C$ both have value $0$ and derivative $0$ for $x=-\dfrac{B}{2A}$, so the intermediate function $ax^2+bx+c$ also has value $0$ and derivative $0$, i.e. a double root. Hence $d=0$.
Case III ($D<0$):
Then $Ax^2+Bx+C=A(x+\dfrac{B}{2A})^2-\dfrac{D}{4A}>0$ for all real $x$ so $\pm(ax^2+bx+c)\le Ax^2+Bx+C$ for all $x$, so $(A\mp a)x^2+(B\mp b)x+(C\mp c)\le 0$ for all $x$, so $(B\mp b)^2\le (A\mp a)(C\mp c)\le 0$ for all $x$, i.e. $B^2\mp 2Bb+b^2\le 4AC+4ac\mp (4Ac+4aC)$.
Average $\mp=+$ and $\mp =-$ to see that $B^2+b^2\le 4AC+4ac$, i.e. $d\le -D$.
On the other hand, take $x=-\dfrac{B}{2A}$ to see that $-\dfrac{d}{4a}\le a(x+\dfrac{b}{2a})^2-\dfrac{d}{4a}=ax^2+bx+c\le Ax^2+Bx+C=-\dfrac{D}{4A}$, i.e., $-d\le -\dfrac{Da}{A}\le -D$.