MHB How can we prove the inequality $|b^2-4ac|\le |B^2-4AC|$ with given conditions?

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose that $a,\,b,\,c,\,A,\,B,\,C$ are real numbers and $a\ne 0$, $A\ne 0$ such that

$|ax^2+bx+c|\le |Ax^2+Bx+C|$

for all real $x$.

Prove that $|b^2-4ac|\le |B^2-4AC|$.
 
Mathematics news on Phys.org
let $f(x)=ax^2+bx+c---(1)$ , and $g(x)=Ax^2+Bx+C---(2)$
by completing the square we have:
$f(x)=a(x+\dfrac {b}{2a})^2+\dfrac {4ac-b^2}{4a}$
and $g(x)=A(x+\dfrac {B}{2A})^2+\dfrac {4AC-B^2}{4A}$
we can transplant f(x) upwards and get g(x),for each x , $|g(x)|\geq |f(x)|$ ,we get $|A|\geq |a|$
by comparing the vertex points of $g(x)$ and $f(x)$
it is easy to get what we want
 
Thanks Albert for participating!

Solution of other:

Assume WLOG that $a>0$. Otherwise replace $(a,\,b,\,c)$ with $(-a,\,-b,\,-c)$. This transformation doesn't change $|ax^2+bx+c|$, and it doesn't change $|b^2-4ac|$.

Similarly, assume that $A>0$.

Observe that $$\lim_{{x}\to{\infty}} \dfrac{Ax^2+Bx+C}{x^2}=A$$. Thus, $$\lim_{{x}\to{\infty}} \left|\dfrac{Ax^2+Bx+C}{x^2}\right|=A$$.

Similarly, $$\lim_{{x}\to{\infty}} \left|\dfrac{ax^2+bx+c}{x^2}\right|=a$$. Hence, $a\le A$.

Now, let $d=b^2-4ac$ and $D=B^2-4AC$.

Case I ($D>0$):

Let $r=\dfrac{-B+\sqrt{D}}{2A}$ and $s=\dfrac{-B-\sqrt{D}}{2A}$, then $r\ne s$. If $x\in\{r,\,s\}$, then $Ax^2+Bx+C=0$ so $|ax^2+bx+c|\le |0|$ so $ax^2+bx+c=0$.

Thus, $ax^2+bx+c=a(x-r)(x-s)$ so $d=a^2(r-s)^2=a^2\left(\dfrac{\sqrt{D}}{A}\right)^2=\dfrac{Da^2}{A^2}$.

Hence $0<d\le D$.

Case II ($D=0$):

The functions $Ax^2+Bx+C$ and $-Ax^2-Bx-C$ both have value $0$ and derivative $0$ for $x=-\dfrac{B}{2A}$, so the intermediate function $ax^2+bx+c$ also has value $0$ and derivative $0$, i.e. a double root. Hence $d=0$.

Case III ($D<0$):

Then $Ax^2+Bx+C=A(x+\dfrac{B}{2A})^2-\dfrac{D}{4A}>0$ for all real $x$ so $\pm(ax^2+bx+c)\le Ax^2+Bx+C$ for all $x$, so $(A\mp a)x^2+(B\mp b)x+(C\mp c)\le 0$ for all $x$, so $(B\mp b)^2\le (A\mp a)(C\mp c)\le 0$ for all $x$, i.e. $B^2\mp 2Bb+b^2\le 4AC+4ac\mp (4Ac+4aC)$.

Average $\mp=+$ and $\mp =-$ to see that $B^2+b^2\le 4AC+4ac$, i.e. $d\le -D$.

On the other hand, take $x=-\dfrac{B}{2A}$ to see that $-\dfrac{d}{4a}\le a(x+\dfrac{b}{2a})^2-\dfrac{d}{4a}=ax^2+bx+c\le Ax^2+Bx+C=-\dfrac{D}{4A}$, i.e., $-d\le -\dfrac{Da}{A}\le -D$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top