MHB How can we prove the inequality challenge for positive real numbers?

AI Thread Summary
The discussion centers on proving the inequality involving positive real numbers a, b, and c, specifically that the sum of the fractions is less than or equal to 3/4. Participants share their solutions and methods for tackling the problem. The conversation highlights the importance of mathematical reasoning and the various approaches to inequality proofs. Engagement among users reflects a collaborative effort to understand and solve the challenge. The thread showcases a community of learners focused on mathematical inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be positive real numbers, prove that

$$\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le \frac{3}{4}$$.
 
Mathematics news on Phys.org
Here is my solution.
Let $S = a + b + c$, $x = a/S$, $b = y/S$, and $z = c/S$. Then $x + y + z = 1$ and the above expression equals

$$\frac{x}{1 + x} + \frac{y}{1 + y} + \frac{z}{1 + z}$$

which is the same as

$$\left(1 - \frac{1}{1 + x}\right) + \left(1 - \frac{1}{1 + y}\right) + \left(1 - \frac{1}{1 + z}\right)$$

or

$$3 - \left(\frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z}\right)\tag{*}$$

By the arithmetic-harmonic mean inequality,

$$\frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} \ge \frac{3^2}{(1 + x) + (1 + y) + (1 + z)} = \frac{9}{3 + (x + y + z)} = \frac{9}{3 + 1} = \frac{9}{4}$$

with equality if and only if $x = y = z$. Hence, the expression $(*)$ is no greater than $3 - 9/4 = 3/4$, with equality if and only if $x = y = z$ (which is equivalent to the condition $a = b = c$).
 
anemone said:
Let $a,\,b$ and $c$ be positive real numbers, prove that

$$\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le \frac{3}{4}$$.

Simple expansion does the tricky part and you are precisely done
 
Euge said:
Here is my solution.
Let $S = a + b + c$, $x = a/S$, $b = y/S$, and $z = c/S$. Then $x + y + z = 1$ and the above expression equals

$$\frac{x}{1 + x} + \frac{y}{1 + y} + \frac{z}{1 + z}$$

which is the same as

$$\left(1 - \frac{1}{1 + x}\right) + \left(1 - \frac{1}{1 + y}\right) + \left(1 - \frac{1}{1 + z}\right)$$

or

$$3 - \left(\frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z}\right)\tag{*}$$

By the arithmetic-harmonic mean inequality,

$$\frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} \ge \frac{3^2}{(1 + x) + (1 + y) + (1 + z)} = \frac{9}{3 + (x + y + z)} = \frac{9}{3 + 1} = \frac{9}{4}$$

with equality if and only if $x = y = z$. Hence, the expression $(*)$ is no greater than $3 - 9/4 = 3/4$, with equality if and only if $x = y = z$ (which is equivalent to the condition $a = b = c$).

Very well done, Euge!(Cool) And thanks for participating!

My solution:
Let $x=a+b,\,y=b+c$ and $z=a+c$, this gives $$a=\frac{x-y+z}{2},\, b=\frac{x+y-z}{2}$$, and $$c=\frac{y+z-x}{2}$$ and the LHS of the intended inequality becomes

$$\begin{align*}\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}&=\frac{x-y+z}{2(x+z)}+\frac{x+y-z}{2(x+y)}+\frac{y+z-x}{2(y+z)}\\&=\frac{(x+z)-y}{2(x+z)}+\frac{(x+y)-z}{2(x+y)}+\frac{(y+z)-x}{2(y+z)}\\&=\frac{3}{2}-\frac{1}{2}\left(\frac{y}{x+z}+\frac{z}{x+y}+\frac{x}{y+z}\right)\\&\le \frac{3}{2}-\frac{1}{2}\left(\frac{3}{2}\right),\,\,\text{since, by Nesbitt's inequality}\,\,\frac{y}{x+z}+\frac{z}{x+y}+\frac{x}{y+z}\ge \frac{3}{2}\\&=\frac{3}{4}\,\,\text{(Q.E.D.)} \end{align*}$$

Evobeus said:
Simple expansion does the tricky part and you are precisely done

Hi Evobeus!

I was wondering how the expansion would help to tackle the problem because for me, I always avoid the expansion (unless it is the last resort) in solving the inequality problems, could you post your entire solution here so I could learn something from it?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top