MHB How Can You Evaluate a Tricky Integral of Sin^5(3x) dx?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
To evaluate the integral of sin^5(2x) from 0 to π/4, a substitution is made using u = cos(2x), leading to the expression -∫(1-u^2)^2 du. The integration limits change accordingly, and the integral simplifies to -∫(u - 2u^2 + u^4) du. After evaluating the integral, the result is found to be 4/15, which matches the book answer. A correction is noted regarding the factor of -2 in the substitution, emphasizing the importance of including all necessary components in the integrand.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{8.3.8}$
$\textit{evaluate}$
\begin{align*}\displaystyle
I_{8}&=\int_{0}^{\pi/4}
\sin^5{2x},dx\\
&=-\int_{0}^{\pi/4} (\sin^2(2x))^2 sin(2x) \, dx
\end{align*}
$\textit{set $u=\cos{2x} \therefore du=-2\sin{(2x)} \, dx$
then $u(0)=1$ and $\displaystyle u(\pi/4)=0$}$
\begin{align*}\displaystyle
&=-\int_{1}^{0} (1-u^2)^2 \,du \\
&=-\int_{1}^{0} (u-2u^2+u^4) \,du \\
&=-\left[ \frac{u^2}{2}-\frac{2u^3}{3}+\frac{u^5}{5}\right]_1^{0}\\
&=\frac{4}{15}\textit{ (book answer)}
\end{align*}

$\textit{ok something ? can't get book answer}$
 
Last edited:
Physics news on Phys.org
karush said:
$\tiny{8.3.8}$
$\textit{evaluate}$
\begin{align*}\displaystyle
I_{8}&=\int_{0}^{\pi/4}
\sin^5{2x},dx\\
&=-\int_{0}^{\pi/4} (\sin^2(2x))^2 sin(2x) \, dx
\end{align*}
$\textit{set $u=\cos{2x} \therefore du=-2\sin{(2x)} \, dx$
then $u(0)=1$ and $\displaystyle u(\pi/4)=0$}$
\begin{align*}\displaystyle
&=-\int_{1}^{0} (1-u^2)^2 \,du \\
&=-\int_{1}^{0} (u-2u^2+u^4) \,du \\
&=-\left[ \frac{u^2}{2}-\frac{2u^3}{3}+\frac{u^5}{5}\right]_1^{0}\\
&=\frac{4}{15}\textit{ (book answer)}
\end{align*}

$\textit{ok something ? can't get book answer}$

Remember you said $\displaystyle \begin{align*} \mathrm{d}u = -2\sin{(2\,x)} \,\mathrm{d}x \end{align*}$. You do NOT have that -2 factor in your integrand. What can you do to put it there?
 
It is also slightly simpler to use the fact that -\int_1^0 f(x)dx= \int_0^1 f(x)dx
 
sorry everyone I made some typos in this so I'll just close the post.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
922
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K