How Can You Evaluate a Tricky Integral of Sin^5(3x) dx?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

The integral of \(\sin^5(2x) \, dx\) from 0 to \(\frac{\pi}{4}\) evaluates to \(\frac{4}{15}\). The substitution \(u = \cos(2x)\) simplifies the integral, leading to the expression \(-\int_{1}^{0} (1-u^2)^2 \, du\). The correct evaluation involves integrating the polynomial \(u - 2u^2 + u^4\) and applying the limits correctly. The final result aligns with the book answer, confirming the calculation's accuracy.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with trigonometric identities
  • Knowledge of substitution methods in integration
  • Basic polynomial integration techniques
NEXT STEPS
  • Study integration techniques involving trigonometric functions
  • Learn about the substitution method in calculus
  • Explore polynomial integration and its applications
  • Review definite integral properties and evaluation methods
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone seeking to deepen their understanding of trigonometric integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{8.3.8}$
$\textit{evaluate}$
\begin{align*}\displaystyle
I_{8}&=\int_{0}^{\pi/4}
\sin^5{2x},dx\\
&=-\int_{0}^{\pi/4} (\sin^2(2x))^2 sin(2x) \, dx
\end{align*}
$\textit{set $u=\cos{2x} \therefore du=-2\sin{(2x)} \, dx$
then $u(0)=1$ and $\displaystyle u(\pi/4)=0$}$
\begin{align*}\displaystyle
&=-\int_{1}^{0} (1-u^2)^2 \,du \\
&=-\int_{1}^{0} (u-2u^2+u^4) \,du \\
&=-\left[ \frac{u^2}{2}-\frac{2u^3}{3}+\frac{u^5}{5}\right]_1^{0}\\
&=\frac{4}{15}\textit{ (book answer)}
\end{align*}

$\textit{ok something ? can't get book answer}$
 
Last edited:
Physics news on Phys.org
karush said:
$\tiny{8.3.8}$
$\textit{evaluate}$
\begin{align*}\displaystyle
I_{8}&=\int_{0}^{\pi/4}
\sin^5{2x},dx\\
&=-\int_{0}^{\pi/4} (\sin^2(2x))^2 sin(2x) \, dx
\end{align*}
$\textit{set $u=\cos{2x} \therefore du=-2\sin{(2x)} \, dx$
then $u(0)=1$ and $\displaystyle u(\pi/4)=0$}$
\begin{align*}\displaystyle
&=-\int_{1}^{0} (1-u^2)^2 \,du \\
&=-\int_{1}^{0} (u-2u^2+u^4) \,du \\
&=-\left[ \frac{u^2}{2}-\frac{2u^3}{3}+\frac{u^5}{5}\right]_1^{0}\\
&=\frac{4}{15}\textit{ (book answer)}
\end{align*}

$\textit{ok something ? can't get book answer}$

Remember you said $\displaystyle \begin{align*} \mathrm{d}u = -2\sin{(2\,x)} \,\mathrm{d}x \end{align*}$. You do NOT have that -2 factor in your integrand. What can you do to put it there?
 
It is also slightly simpler to use the fact that -\int_1^0 f(x)dx= \int_0^1 f(x)dx
 
sorry everyone I made some typos in this so I'll just close the post.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
953
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K