How can you solve the limit without using L'Hopital's Rule?

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The limit $$\lim\limits_{x \to 0} \frac{9^x-5^x}{x}$$ can be evaluated without L'Hopital's Rule by using the definition of the derivative or applying Taylor series expansions for the exponential functions. Members provided various solutions, with anemone presenting a direct approach, while MarkFL and Chris L T521 offered alternative methods. The discussion highlights the importance of understanding exponential limits and derivatives in calculus. Several participants successfully solved the limit, demonstrating different techniques to arrive at the correct answer. The thread emphasizes the value of collaborative problem-solving in mathematics.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Evaluate the following limit without using L'Hopital's Rule.

$$\lim\limits_{x \to 0} \frac{9^x-5^x}{x}$$
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone
3) Chris L T521

Partial credit goes to kaliprasad.

Solution (from anemone):
Note that every exponential function is a power of the natural exponential function, or $a^x=e^{x\ln a}$, thus we can rewrite the problem as

$$\lim\limits_{x \to 0} \frac{9^x-5^x}{x}=\lim\limits_{x \to 0} \frac{e^{x\ln 9}-e^{x\ln 5}}{x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\lim\limits_{x \to 0} \frac{e^{x\ln 9}-e^0+e^0-e^{x\ln 5}}{x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\lim\limits_{x \to 0} \left( \frac {e^{x\ln 9}-e^0}{x-0}\right)-\lim\limits_{x \to 0}\left(\frac{e^{x\ln 5}-e^0}{x-0}\right)$$ but $$\left(\frac{dy}{dx}|_{x=0}=f(0)=\lim\limits_{x \to 0}\frac{f(x)-f(0)}{x-0}\right)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{d}{dx}(e^{x\ln 9})|_{x=0}- \frac{d}{dx}(e^{x\ln 5})|_{x=0}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln 9(e^{x\ln 9})|_{x=0}- \ln 5(e^{x\ln 5})|_{x=0}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln 9(e^{0\ln 9})- \ln 5(e^{0\ln 5})$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln 9(e^0)- \ln 5(e^0)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln 9(1)- \ln 5(1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln \frac{9}{5}$$

Alternate solution (from MarkFL):
First, let's rewrite the limit as follows:

$$L=\lim_{x\to0}\left(\frac{e^{x\ln(9)}}{x}-\frac{e^{x\ln(5)}}{x} \right)$$

Next, we may employ the Maclaurin series:

$$e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$$

and so we find:

$$\frac{e^{ax}}{x}= \frac{1}{x}\sum_{k=0}^{\infty} \frac{(ax)^k}{k!}=\frac{1}{x}+a+ax \sum_{k=2}^{\infty} \frac{(ax)^{k-1}}{k!}$$

Applying this to the limit, we may write:

$$L=\lim_{x\to0}\left(\left(\frac{1}{x}+\ln(9)+\ln(9)x \sum_{k=2}^{\infty} \frac{(\ln(9)x)^{k-1}}{k!} \right)-\left(\frac{1}{x}+\ln(5)+\ln(5)x \sum_{k=2}^{\infty} \frac{(\ln(5)x)^{k-1}}{k!} \right) \right)$$

Simplify:

$$L=\lim_{x\to0}\left(\ln(9)+\ln(9)x \sum_{k=2}^{\infty} \frac{(\ln(9)x)^{k-1}}{k!}-\ln(5)-\ln(5)x \sum_{k=2}^{\infty} \frac{(\ln(5)x)^{k-1}}{k!} \right)$$

$$L=\lim_{x\to0}\left(\ln\left(\frac{9}{5} \right)+x\left(\ln(9) \sum_{k=2}^{\infty} \frac{(\ln(9)x)^{k-1}}{k!}-\ln(5) \sum_{k=2}^{\infty} \frac{(\ln(5)x)^{k-1}}{k!} \right) \right)$$

Hence, we find:

$$L=\ln\left(\frac{9}{5} \right)$$

Alternate solution 2 (from Chris L T521):
I will probably use a not-so-conventional technique, but the crux of my argument relies on using Newton's generalized binomial theorem, which says that if $x$ and $y$ are any real numbers with $|x|>|y|$ and $r$ is any complex number, then
\[(x+y)^r = \sum_{k=0}^{\infty}\binom{r}{k} x^{r-k}y^k\]
where
\[\binom{r}{k} = \frac{r(r-1)(r-2)\cdots (r-k+1)}{k!}\]
denotes the falling factorial with $\displaystyle\binom{r}{0}=1$. This generalized binomial theorem will be applied to the term $9^x$ since $9^x=(5+4)^x$. In this state, we satisfy all the necessary conditions to see that
\[\begin{aligned} 9^x &=(5+4)^x\\ & = \sum_{k=0}^{\infty}\binom{x}{k}5^{x-k}4^k \\ &= 5^x \sum_{k=0}^{\infty}\binom{x}{k} \left(\frac{4}{5}\right)^k\end{aligned}\]
In addition to all of this, my solution will also depend on knowing the Taylor series for $\ln(1+x)$:
\[\ln(1+x)=\sum_{k=1}^{\infty}(-1)^{k-1}\frac{x^k}{k}.\]
Knowing these two things, we see that
\[\begin{aligned} \lim_{x\to 0} \frac{9^x-5^x}{x} &= \lim_{x\to 0}\frac{\displaystyle\left(5^x \sum_{k=0}^{\infty}\binom{x}{k} \left(\frac{4}{5}\right)^k \right)-5^x}{x} \\ &= \lim_{x\to 0} \frac{5^x}{x}\left[\left( \sum_{k=0}^{\infty} \binom{x}{k} \left(\frac{4}{5}\right)^k\right) - 1 \right]\\ &= \lim_{x\to 0}\frac{5^x}{x} \left[\left( 1 + \frac{4}{5}x + \left(\frac{4}{5}\right)^2\frac{x(x-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{x(x-1)(x-2)}{3!}+\cdots \right) - 1\right] \\ &= \lim_{x\to 0}\frac{5^x}{x} \left[\frac{4}{5}x + \left(\frac{4}{5}\right)^2\frac{x(x-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{x(x-1)(x-2)}{3!}+\left(\frac{4}{5}\right)^4 \frac{x(x-1)(x-2)(x-3)}{4!} +\cdots\right]\\ &= \lim_{x\to 0}\frac{5^x}{x} \left[x\left(\frac{4}{5} + \left(\frac{4}{5}\right)^2\frac{(x-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{(x-1)(x-2)}{3!}+\left(\frac{4}{5}\right)^4 \frac{(x-1)(x-2)(x-3)}{4!} +\cdots\right) \right] \\ &= \lim_{x\to 0} 5^x \left[\frac{4}{5} + \left(\frac{4}{5}\right)^2\frac{(x-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{(x-1)(x-2)}{3!}+\left(\frac{4}{5}\right)^4 \frac{(x-1)(x-2)(x-3)}{4!} +\cdots \right]\\ &= \frac{4}{5} + \left(\frac{4}{5}\right)^2\frac{(-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{(-1)(-2)}{3!}+\left(\frac{4}{5}\right)^4 \frac{(-1)(-2)(-3)}{4!} +\cdots \\ &= \frac{4}{5} + \frac{(-1)^1}{2} \left(\frac{4}{5}\right)^2 + \frac{2!(-1)^2}{3!} \left(\frac{4}{5}\right)^3 + \frac{3!(-1)^3}{4!} \left(\frac{4}{5}\right)^4+\cdots \\ &= \frac{(-1)^{1-1}}{1}\left(\frac{4}{5}\right)^1 + \frac{(-1)^{2-1}}{2} \left(\frac{4}{5}\right)^2 + \frac{(-1)^{3-1}}{3} \left(\frac{4}{5}\right)^3 + \frac{(-1)^{4-1}}{4} \left(\frac{4}{5}\right)^4 +\cdots \\ &= \sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k} \left(\frac{4}{5}\right)^k \\ &= \ln\left(1+\frac{4}{5}\right) \\ &= \ln\left(\frac{9}{5}\right)\end{aligned}\]
Thus, we have that
\[\lim_{x\to 0}\frac{9^x-5^x}{x}=\ln\left(\frac{9}{5}\right).\]
 

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K