How can you solve the limit without using L'Hopital's Rule?

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

The limit evaluation discussed is $$\lim\limits_{x \to 0} \frac{9^x-5^x}{x}$$, which was successfully solved without using L'Hopital's Rule. Contributors MarkFL, anemone, and Chris L T521 provided correct solutions, showcasing different approaches to the problem. The discussion emphasizes the importance of understanding exponential functions and their behavior near zero.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with exponential functions
  • Knowledge of Taylor series expansion
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study Taylor series for exponential functions
  • Explore alternative limit evaluation techniques
  • Learn about the properties of exponential growth
  • Practice solving limits without L'Hopital's Rule
USEFUL FOR

Students and educators in calculus, mathematicians interested in limit evaluation techniques, and anyone seeking to deepen their understanding of exponential functions and their limits.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Evaluate the following limit without using L'Hopital's Rule.

$$\lim\limits_{x \to 0} \frac{9^x-5^x}{x}$$
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone
3) Chris L T521

Partial credit goes to kaliprasad.

Solution (from anemone):
Note that every exponential function is a power of the natural exponential function, or $a^x=e^{x\ln a}$, thus we can rewrite the problem as

$$\lim\limits_{x \to 0} \frac{9^x-5^x}{x}=\lim\limits_{x \to 0} \frac{e^{x\ln 9}-e^{x\ln 5}}{x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\lim\limits_{x \to 0} \frac{e^{x\ln 9}-e^0+e^0-e^{x\ln 5}}{x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\lim\limits_{x \to 0} \left( \frac {e^{x\ln 9}-e^0}{x-0}\right)-\lim\limits_{x \to 0}\left(\frac{e^{x\ln 5}-e^0}{x-0}\right)$$ but $$\left(\frac{dy}{dx}|_{x=0}=f(0)=\lim\limits_{x \to 0}\frac{f(x)-f(0)}{x-0}\right)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{d}{dx}(e^{x\ln 9})|_{x=0}- \frac{d}{dx}(e^{x\ln 5})|_{x=0}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln 9(e^{x\ln 9})|_{x=0}- \ln 5(e^{x\ln 5})|_{x=0}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln 9(e^{0\ln 9})- \ln 5(e^{0\ln 5})$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln 9(e^0)- \ln 5(e^0)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln 9(1)- \ln 5(1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln \frac{9}{5}$$

Alternate solution (from MarkFL):
First, let's rewrite the limit as follows:

$$L=\lim_{x\to0}\left(\frac{e^{x\ln(9)}}{x}-\frac{e^{x\ln(5)}}{x} \right)$$

Next, we may employ the Maclaurin series:

$$e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$$

and so we find:

$$\frac{e^{ax}}{x}= \frac{1}{x}\sum_{k=0}^{\infty} \frac{(ax)^k}{k!}=\frac{1}{x}+a+ax \sum_{k=2}^{\infty} \frac{(ax)^{k-1}}{k!}$$

Applying this to the limit, we may write:

$$L=\lim_{x\to0}\left(\left(\frac{1}{x}+\ln(9)+\ln(9)x \sum_{k=2}^{\infty} \frac{(\ln(9)x)^{k-1}}{k!} \right)-\left(\frac{1}{x}+\ln(5)+\ln(5)x \sum_{k=2}^{\infty} \frac{(\ln(5)x)^{k-1}}{k!} \right) \right)$$

Simplify:

$$L=\lim_{x\to0}\left(\ln(9)+\ln(9)x \sum_{k=2}^{\infty} \frac{(\ln(9)x)^{k-1}}{k!}-\ln(5)-\ln(5)x \sum_{k=2}^{\infty} \frac{(\ln(5)x)^{k-1}}{k!} \right)$$

$$L=\lim_{x\to0}\left(\ln\left(\frac{9}{5} \right)+x\left(\ln(9) \sum_{k=2}^{\infty} \frac{(\ln(9)x)^{k-1}}{k!}-\ln(5) \sum_{k=2}^{\infty} \frac{(\ln(5)x)^{k-1}}{k!} \right) \right)$$

Hence, we find:

$$L=\ln\left(\frac{9}{5} \right)$$

Alternate solution 2 (from Chris L T521):
I will probably use a not-so-conventional technique, but the crux of my argument relies on using Newton's generalized binomial theorem, which says that if $x$ and $y$ are any real numbers with $|x|>|y|$ and $r$ is any complex number, then
\[(x+y)^r = \sum_{k=0}^{\infty}\binom{r}{k} x^{r-k}y^k\]
where
\[\binom{r}{k} = \frac{r(r-1)(r-2)\cdots (r-k+1)}{k!}\]
denotes the falling factorial with $\displaystyle\binom{r}{0}=1$. This generalized binomial theorem will be applied to the term $9^x$ since $9^x=(5+4)^x$. In this state, we satisfy all the necessary conditions to see that
\[\begin{aligned} 9^x &=(5+4)^x\\ & = \sum_{k=0}^{\infty}\binom{x}{k}5^{x-k}4^k \\ &= 5^x \sum_{k=0}^{\infty}\binom{x}{k} \left(\frac{4}{5}\right)^k\end{aligned}\]
In addition to all of this, my solution will also depend on knowing the Taylor series for $\ln(1+x)$:
\[\ln(1+x)=\sum_{k=1}^{\infty}(-1)^{k-1}\frac{x^k}{k}.\]
Knowing these two things, we see that
\[\begin{aligned} \lim_{x\to 0} \frac{9^x-5^x}{x} &= \lim_{x\to 0}\frac{\displaystyle\left(5^x \sum_{k=0}^{\infty}\binom{x}{k} \left(\frac{4}{5}\right)^k \right)-5^x}{x} \\ &= \lim_{x\to 0} \frac{5^x}{x}\left[\left( \sum_{k=0}^{\infty} \binom{x}{k} \left(\frac{4}{5}\right)^k\right) - 1 \right]\\ &= \lim_{x\to 0}\frac{5^x}{x} \left[\left( 1 + \frac{4}{5}x + \left(\frac{4}{5}\right)^2\frac{x(x-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{x(x-1)(x-2)}{3!}+\cdots \right) - 1\right] \\ &= \lim_{x\to 0}\frac{5^x}{x} \left[\frac{4}{5}x + \left(\frac{4}{5}\right)^2\frac{x(x-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{x(x-1)(x-2)}{3!}+\left(\frac{4}{5}\right)^4 \frac{x(x-1)(x-2)(x-3)}{4!} +\cdots\right]\\ &= \lim_{x\to 0}\frac{5^x}{x} \left[x\left(\frac{4}{5} + \left(\frac{4}{5}\right)^2\frac{(x-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{(x-1)(x-2)}{3!}+\left(\frac{4}{5}\right)^4 \frac{(x-1)(x-2)(x-3)}{4!} +\cdots\right) \right] \\ &= \lim_{x\to 0} 5^x \left[\frac{4}{5} + \left(\frac{4}{5}\right)^2\frac{(x-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{(x-1)(x-2)}{3!}+\left(\frac{4}{5}\right)^4 \frac{(x-1)(x-2)(x-3)}{4!} +\cdots \right]\\ &= \frac{4}{5} + \left(\frac{4}{5}\right)^2\frac{(-1)}{2!} + \left(\frac{4}{5}\right)^3\frac{(-1)(-2)}{3!}+\left(\frac{4}{5}\right)^4 \frac{(-1)(-2)(-3)}{4!} +\cdots \\ &= \frac{4}{5} + \frac{(-1)^1}{2} \left(\frac{4}{5}\right)^2 + \frac{2!(-1)^2}{3!} \left(\frac{4}{5}\right)^3 + \frac{3!(-1)^3}{4!} \left(\frac{4}{5}\right)^4+\cdots \\ &= \frac{(-1)^{1-1}}{1}\left(\frac{4}{5}\right)^1 + \frac{(-1)^{2-1}}{2} \left(\frac{4}{5}\right)^2 + \frac{(-1)^{3-1}}{3} \left(\frac{4}{5}\right)^3 + \frac{(-1)^{4-1}}{4} \left(\frac{4}{5}\right)^4 +\cdots \\ &= \sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k} \left(\frac{4}{5}\right)^k \\ &= \ln\left(1+\frac{4}{5}\right) \\ &= \ln\left(\frac{9}{5}\right)\end{aligned}\]
Thus, we have that
\[\lim_{x\to 0}\frac{9^x-5^x}{x}=\ln\left(\frac{9}{5}\right).\]
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K