MHB How Can You Verify the Sum of Roots in a Quadratic Equation?

  • Thread starter Thread starter mathdad
  • Start date Start date
AI Thread Summary
To verify the sum of the roots in a quadratic equation ax^2 + bx + c = 0, the roots A and B can be expressed as A = (-b + √(b² - 4ac))/(2a) and B = (-b - √(b² - 4ac))/(2a). Adding these two roots results in the radicals canceling out, simplifying the expression to (-2b)/(2a). This further simplifies to -b/a, confirming the relationship A + B = -b/a. Thus, the theorem regarding the sum of the roots is logically verified through this process.
mathdad
Messages
1,280
Reaction score
0
Let A and B be roots of the quadratic equation
ax^2 + bx + c = 0. Verify the statement.

A + B = -b/a

What are the steps to verify this statement?
 
Mathematics news on Phys.org
RTCNTC said:
Let A and B be roots of the quadratic equation
ax^2 + bx + c = 0. Verify the statement.

A + B = -b/a

What are the steps to verify this statement?
There is a theorem for this, but let's do it logically. The two solutions, A and B of the quadratic are
[math]A = \frac{-b + \sqrt{b^2 - 4ac}}{2a}[/math] and [math]B = \frac{-b - \sqrt{b^2 - 4ac}}{2a}[/math]

Now add the two. (Hint: What happens to the radicals?)

-Dan
 
topsquark said:
There is a theorem for this, but let's do it logically. The two solutions, A and B of the quadratic are
[math]A = \frac{-b + \sqrt{b^2 - 4ac}}{2a}[/math] and [math]B = \frac{-b - \sqrt{b^2 - 4ac}}{2a}[/math]

Now add the two. (Hint: What happens to the radicals?)

-Dan

The radicals disappear. We are then left with (-2b)/(2a).
Of course, (-2b)/(2a) simplifies to -b/a.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top