How do a bunch of integrals make an n-simplex or an n-cube?

Click For Summary
SUMMARY

The discussion centers on the mathematical derivation of integrals that represent n-simplices and n-cubes, specifically in the context of Carroll's parallel propagator. The integral expressions for T1, T2, and T3 are analyzed, demonstrating how they correspond to geometric shapes in higher dimensions. The participant highlights the ease of using the n-cube method for vector propagation on a sphere's surface and seeks clarification on the ordering of matrices A(ηi) by the operator P. The conclusion emphasizes the importance of understanding the geometric interpretations of these integrals in advanced mathematics.

PREREQUISITES
  • Understanding of n-dimensional geometry, specifically n-simplices and n-cubes.
  • Familiarity with matrix notation and operations in linear algebra.
  • Knowledge of integral calculus, particularly multiple integrals.
  • Basic concepts of vector propagation in differential geometry.
NEXT STEPS
  • Study the properties of n-simplices and n-cubes in higher-dimensional spaces.
  • Learn about the applications of the parallel propagator in general relativity.
  • Explore advanced integral calculus techniques, including Fubini's theorem for multiple integrals.
  • Investigate the role of matrix ordering in mathematical proofs and applications.
USEFUL FOR

Mathematicians, physicists, and students studying advanced calculus, linear algebra, and differential geometry, particularly those interested in the applications of integrals in higher-dimensional spaces.

George Keeling
Gold Member
Messages
183
Reaction score
42
TL;DR
Problem with series of integrals in parallel propagator. Parallel transporting vectors.
This question arises from Carroll's Appendix I on the parallel propagator where he shows that, in matrix notation, it is given by$$P\left(\lambda,\lambda_0\right)=I+\sum_{n=1}^{n=\infty}T_n$$and$$T_n=\int_{\lambda_0}^{\lambda}{\int_{\lambda_0}^{\eta_n}\int_{\lambda_0}^{\eta_{n-1}}{\ldots\int_{\lambda_0}^{\eta_2}A\left(\eta_n\right)A\left(\eta_{n-1}\right)\ldots A\left(\eta_1\right)}d^n\eta}$$$$\frac{1}{n!}\int_{\lambda_0}^{\lambda}{\int_{\lambda_0}^{\lambda}\int_{\lambda_0}^{\lambda}{\ldots\int_{\lambda_0}^{\lambda}\mathcal{P}\left[A\left(\eta_n\right)A\left(\eta_{n-1}\right)\ldots A\left(\eta_1\right)\right]}d^n\eta}$$where ##\mathcal{P}## orders the matrices ##A\left(\eta_i\right)## so that ##\eta_n\geq\eta_{n-1}\geq\ldots\geq\eta_1##.

Carroll says that the ##n##th term in the first series of integrals is an integral over an ##n##-dimensional right triangle or ##n##-simplex:$$T_1=\int_{\lambda_0}^{\lambda}{A\left(\eta_1\right)d\eta_1}$$$$T_2=\int_{\lambda_0}^{\lambda}{\int_{\lambda_0}^{\eta_2}A\left(\eta_2\right)A\left(\eta_1\right)d\eta_1d\eta_2}$$$$T_2=\int_{\lambda_0}^{\lambda}{\int_{\lambda_0}^{\eta_3}\int_{\lambda_0}^{\eta_2}A\left(\eta_3\right)A\left(\eta_2\right)A\left(\eta_1\right)d^3\eta}$$and illustrates them thus:
n-simplices.jpg

I can see how a 2-simplex with short sides equal is half a square and how that carries on for more dimensions but I can't see how the expression, for example, for ##T_2## is an integral over a right angle triangle, let alone one with short sides equal ##\lambda-\lambda_0##.

It would seem that what exactly ##A## is is immaterial. I tested calculating ##T_2## both ways for three cases$$A\left(x\right)=3x^2,A_{\ \ \rho}^\mu\left(\lambda\right)=\left(\begin{matrix}0&\sin{\psi}\cos{\psi}\\-\cot{\psi}&0\\\end{matrix}\right),\ A_{\ \ \rho}^\mu\left(x\right)=\left(\begin{matrix}2x&3x^2\\4x^3&5x^4\\\end{matrix}\right)$$the first two gave the same answer by both methods and the third did not (I may easily have made a mistake on that.) The second is what ##A_{\ \ \rho}^\mu## would be for propagating a vector on the surface of a sphere at constant latitude ##\psi##. It was much easier to use the second method (over an ##n##-cube) and that did indeed parallel propagate vectors round lines of constant latitude very well.

If anybody can help me understand why the integrals are integrals over ##n##-simplices or ##n##-cubes and how ##\mathcal{P}## orders the matrices ##A\left(\eta_i\right)## so that ##\eta_n\geq\eta_{n-1}\geq\ldots\geq\eta_1## (the ##\eta_i## seem to be moving targets) I would greatly appreciate it.
 
Physics news on Phys.org
George Keeling said:
I can't see how the expression, for example, for ##T_2## is an integral over a right angle triangle, let alone one with short sides equal ##\lambda-\lambda_0##.
The long side of the triangle has the equation ##\eta_1 = \eta_2##, so to calculate the multiple integral over the triangle you first hold ##\eta_2## constant and then integrate over ##\eta_1## from ##\lambda_0## to ##\eta_2## (from the left edge to the long side), and then you integrate the result over ##\eta_2## from ##\lambda_0## to ##\lambda##.
 
  • Informative
Likes   Reactions: George Keeling
Thank you @ergospherical I think I understand now. The multiple integrals over the square are more readily comprehensible.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 175 ·
6
Replies
175
Views
26K
  • · Replies 3 ·
Replies
3
Views
2K