MHB How Do Absolute Values Express At Least and At Most Conditions?

AI Thread Summary
Absolute values are used to express conditions of "at least" and "at most" by defining the distance between two values. For "at least" statements, such as the distance between x and 4 being at least 8, the correct expression is |x - 4| ≥ 8, indicating that the value is equal to or greater than 8. Conversely, for "at most" statements, like the distance between x^3 and -1 being at most 0.001, the expression is |x^3 - (-1)| ≤ 0.001, meaning the value is equal to or less than 0.001. Understanding these distinctions is crucial for accurately applying inequalities in mathematical contexts. This knowledge is essential for solving problems involving absolute values effectively.
mathdad
Messages
1,280
Reaction score
0
Rewrite each statement using absolute values.

1. The distance between x and 4 is at least 8.

Work:

| x - 4 | > or = 8

Correct?

Why must we write greater than or equal to for AT LEAST statements?

2. The distance between x^3 and -1 is at most 0.001.

Work:

| x^3 - (-1) | < or = 0.001

Correct?

Why must we write less than or equal to for AT MOST statements?
 
Mathematics news on Phys.org
RTCNTC said:
Rewrite each statement using absolute values.

1. The distance between x and 4 is at least 8.

Work:

| x - 4 | > or = 8

Correct?

Why must we write greater than or equal to for AT LEAST statements?

Yes, that's correct. When we say something is "at least" some value, that's equivalent to saying it is that value or greater. If I say I have at least \$20 in my pocket, then you know the money in my pocket is \$20 or more.

RTCNTC said:
2. The distance between x^3 and -1 is at most 0.001.

Work:

| x^3 - (-1) | < or = 0.001

Correct?

Why must we write less than or equal to for AT MOST statements?

That's correct too. When we say some value is at most some other value, then that's equivalent to saying it is that value or less. If I say I have "at most" \$20 in my pocket then you know the money I have in my pocket is less than or equal to \$20. :D
 
Good to know the difference between "at least" and "at most" because it is very common in the world of inequality applications.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top