I How do Cooper pairs carry a current with zero net-momentum?

alberliu
Messages
2
Reaction score
0
TL;DR Summary
How do Cooper pairs carry a current with zero net-momentum?
One of the first starting points of introducing BCS theory in a superconductor is applying a theorem stating that the ground-state of a quantum system has an expectation value for its momentum of zero. You then use this to say that an electron must pair with another electron of equal and opposite momentum to form a Cooper pair.

If this is the case, how does this zero-momentum state result in a finite supercurrent? Maybe this is a frame-of-reference issue, but it's not clear to me how you get net charge movement in one direction with a net momentum of zero.
 
Physics news on Phys.org
That's simply not true. In a state with finite current, the Cooper pairs don't have finite momentum and the electrons in a pair don't have exactly opposite momentum. In the book by Schrieffer "Theory of superconductivity", this is explained in detail.
 
alberliu said:
Summary:: How do Cooper pairs carry a current with zero net-momentum?

One of the first starting points of introducing BCS theory in a superconductor is applying a theorem stating that the ground-state of a quantum system has an expectation value for its momentum of zero. You then use this to say that an electron must pair with another electron of equal and opposite momentum to form a Cooper pair.

If this is the case, how does this zero-momentum state result in a finite supercurrent? Maybe this is a frame-of-reference issue, but it's not clear to me how you get net charge movement in one direction with a net momentum of zero.
I think you've mistaken electron spin with linear momentum. The Cooper pairs are of electrons with opposite spins, not opposite momenta. Now, the electrons will be very close to absolute zero, so their linear momenta will be very close to zero as well, but it's not a requirement that they stay at zero momentum once they've already paired up.

Electricity is actually a very slow movement of electrons in non-superconductive situations, but in superconductive situations, it's likely just as slow if not slower, but it's not the individual electron speeds that matter but the overall movement of a mass of electrons that give you your power.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top