How Do Engineers Design AntiNoise to Effectively Reduce Ambient Noise?

AI Thread Summary
Engineers design anti-noise systems for noise cancellation by using both passive and active methods to reduce ambient noise levels. The discussion focuses on calculating the appropriate anti-noise signal, specifically how to achieve a combined amplitude of 20 when added to ambient noise of 100 sin(ω t). It highlights the challenge of achieving perfect phase opposition, as the anti-noise signal cannot be negative. The conversation also touches on the mathematical relationship between the amplitudes and phases of the signals involved, emphasizing the importance of understanding sine wave properties. Ultimately, the goal is to minimize energy consumption while effectively reducing ambient noise.
Decentralized
Messages
2
Reaction score
0
Summary:: AmbientNoise + AntiNoise combined calculation

I am having trouble with this question:
Noise cancelling headphones use both passive (insulated earphones) and active (electronic “anti-noise”) methods to nullify ambient noise. One task of a sound engineer is to design low-energy anti-noise signals that help cancel ambient noise. Consider anti-noise that is to be combined (to cancel) ambient-noise.

AmbientNoise = 100 sin(ω t) Amplitude 100 and frequency ω .
AntiNoise = A sin(ω t + φ) Amplitude A is a positive number. −π < φ ≤ π

1. Choose AntiNoise so the sum AmbientNoise + AntiNoise has a combined amplitude of 20 (much quieter than AmbientNoise). Guess/choose the phase φ that minimizes A (minimum A decreases hearing fatigue and energy consumption).

AmbientNoise = 100 sin(ω t)
AntiNoise = A sin(ω t + φ)
A = ____ φ = _____rad
CombinedSound = ____sin( ____ )

2. It is difficult for AntiNoise to be perfectly out of phase with AmbientNoise (i.e., difficult for φ to be exactly π). Consider AntiNoise = 100 sin(ω t + π + δ). Determine the maximum δ between 0 and π to create a combined noise/anti-noise sound of amplitude 20, i.e.,
CombinedSound = 100 sin(ω t) + 100 sin(ω t + π + δ) = 20 sin(ω t + SomePhase)
Show δ is governed by the following equation – and solve for δ.

sqr(2 − 2 cos(δ))= 0.2
δ ≈ 0.2 rad ≈ 11.5◦

For the first question, if I want to cancell ambient noise with anti noise down to 20, I am assuming it is going to be -80 sin(ω t)?
But A cannot be a negative number. I am not sure how to approach this problem. We've only learned Asin(x) + Bsin(x) = C sin(x+φ) where C = sqr( A^2 + B^2).

Appreciate your input here.
 
Physics news on Phys.org
Decentralized said:
For the first question, if I want to cancell ambient noise with anti noise down to 20, I am assuming it is going to be -80 sin(ω t)?
But A cannot be a negative number. I am not sure how to approach this problem.
Welcome to PF. :smile:

What is the value of ##sin(\omega + \pi)## compared to ##sin(\omega)## ?
 
berkeman said:
Welcome to PF. :smile:

What is the value of ##sin(\omega + \pi)## compared to ##sin(\omega)## ?
Oh, It's going to be ##sin(\omega + \pi)## = ##-sin(\omega)##
Should I make it ##sin(\omega t + \pi \omega)## = ##-sin(\omega t)## so that φ = ω π, A = 80?

But if that's the case, φ depends on ω, and in the second question it gives out:
CombinedSound = 100 sin(ω t) + 100 sin(ω t + π + δ) = 20 sin(ω t + SomePhase),
in which A = 100, φ = π+ δ. It is kind of contradict with what I just got. Am I on the right direction so far?

Appreciate your reply!
 
1630261771030.png

Correct.

1630261798625.png

No, just ##sin(\omega t + \pi) = -sin(\omega t)##
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top