MHB How Do I Calculate the Probability of Two Events in Email Marketing?

Click For Summary
To calculate the probability of two events in email marketing, event A is clicking a link in an email, and event B is making a purchase. The probability of making a purchase given that a link was clicked, denoted as P(B | A), is calculated using the formula P(B | A) = P(A ∩ B) / P(A). The correct interpretation shows that P(A ∩ B) is derived from P(B | A) multiplied by P(A), not simply P(A) times P(B) unless A and B are independent. In this scenario, P(B | A) equals 1/50, and the overall probability of both events occurring together is 1/10,000.
tmt1
Messages
230
Reaction score
0
Let say I am a company and I email 1 million customers to try to get them to make a purchase on my website, of which 50000 click the link in the email and of those 1000 makes a purchase.

We can say that clicking the link is event A, and making a purchase is event B.

What is $P(B | A)$ or the probably of B if A happens. The formula for this is $$\frac{P(A \cap B)}{P(B)}$$.

How can I figure out $P(A \cap B)$? I know the formula is $P(A) \cdot P(B)$.

I guess $P(A)$ is equal to $\frac{1000}{1000000}$ and $P(B) = \frac{50000}{1000000}$ but these multiplied is $\frac{50,000,000}{1000000000000}$ however I think the answer says that $P(A) \cdot P(B)$ would be $\frac{1000}{1000000}$
 
Last edited:
Mathematics news on Phys.org
P(A) is the probability that
tmt said:
Let say I am a company and I email 1 million customers to try to get them to make a purchase on my website, of which 50000 click the link in the email and of those 1000 makes a purchase.

We can say that clicking the link is event A, and making a purchase is event B.

What is $P(B | A)$ or the probably of B if A happens. The formula for this is $$\frac{P(A \cap B)}{P(B)}$$.

How can I figure out $P(A \cap B)$? I know the formula is $P(A) \cdot P(B)$.
No, it is not! As you said in the immediately previous sentence $P(B|A)= \frac{P(A\cap B)}{P(B)}$ so that $P(A\cap B)= P(A|B)\cdot P(B)$ or, equivalently, $P(A\cap B)= P(B|A)\cdot P(B)$. $P(A\cap B)= P(A)\cdot P(B)$ if and only if A and B are independent- that is, if $P(A|B)= P(A)$ and $P(B|A)= P(B)$.

I guess $P(A)$ is equal to $\frac{1000}{1000000}$
Yes, that is correct.

and $P(B) = \frac{50000}{1000000}$
No, in this case, we are not told what P(B) is. We are told that of the 50000 people who clicked on the e-mail 1000 purchased. That is, $P(B|A)= \frac{1000}{50000}= \frac{1}{50}$.

[quotebut these multiplied is $\frac{50,000,000}{1000000000000}$ however I think the answer says that $P(A) \cdot P(B)$ would be $\frac{1000}{1000000}$[/QUOTE]
I'm not sure were "50,000,000" and "100000000" came from, you had said before 50000 and 1000000, but the fraction is, of course, the same. $P(A)= \frac{5000}{1000000}= \frac{5}{1000}$. And since, as above, $P(B|A)= \frac{1}{50}$, $P(A\cap B)= P(B|A)P(A \frac{5}{1000}\cdot\frac{1}{50}= frac{1}{10000}$.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
784
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K