How do I calculate variance for volume, 𝑉 (i.e, βŸ¨Ξ”π‘‰2⟩=βŸ¨π‘‰2βŸ©βˆ’βŸ¨π‘‰βŸ©2)?

  • Thread starter Thread starter bumblebee77
  • Start date Start date
  • Tags Tags
    Variance Volume
bumblebee77
Messages
56
Reaction score
2
Homework Statement
I have to calculate Δ𝑉2 (where the "2" means "squared") to calculate something else. But I don't know if I should treat V as a scalar or vector.
Relevant Equations
βŸ¨Ξ”π‘‰2⟩=βŸ¨π‘‰2βŸ©βˆ’βŸ¨π‘‰βŸ©2
"2" is "squared."
⟨⟩ means the average of a column of values (i.e., collected over time).
This is not actually a homework problem. I'm old but having trouble with something that's probably at student level because it's so long since I learned this stuff. I would be grateful if someone would please take pity on me and help me out!

I am trying to calculate something that includes this term: βŸ¨Ξ”π‘‰2⟩. It means "variance of volume." I'm getting lost though because I don't understand if I should treat volume as a scalar or vector here.

What I mean is, for any other parameter made up of three component directions (x, y, z), I would calculate variance by breaking the parameter into its x, y, z components and then using a process that involves dotting them together (I can write out the details if anyone is interested). However, I'm not sure if this is how I should treat V.

If I use Python's np.var(V) function on V (not its components), I get an answer that seems reasonable to the calculation that uses the result of βŸ¨Ξ”π‘‰2⟩. If I use the component method, I don't. Does anyone know what is going on with this? Thank you.
 
Last edited:
Physics news on Phys.org
Volume is a scalar, not a vector. It doesn't have components. Are you thinking of a rectangular container with length, width and height? These are not "components" of the volume, in a vectorial sense. They don't behave the same way. If you have e.g. a velocity vector, then
v = √(vx2+vy2+vz2)
But the volume is given by V = xyz. You can't analyse it into components in the same way.
 
  • Informative
Likes bumblebee77
@mjc123, thank you very much!

I don't know why I'm having so much trouble with this. I guess I'm fixated on components because I'm doing simulations at fixed pressure where the volume of my system varies and I'm getting volume output in terms of x, y, z components.

I have done similar calculations for properties that are vectors--where I have to dot the components together as part of the variance calculation.

Yes, I was thinking of the coordinate directions as vector components.

Thanks a lot. I understand your words but still feel like I'm missing something fundamental. At least it sounds like I'm on the right track because my result is right when I treat volume as a scalar! Really appreciate your help. If there's a way to credit you in addition to liking your reply, please feel free to let me know!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top