How do I calculate variance for volume, 𝑉 (i.e, ⟨Δ𝑉2⟩=⟨𝑉2⟩−⟨𝑉⟩2)?

  • Thread starter Thread starter bumblebee77
  • Start date Start date
  • Tags Tags
    Variance Volume
Click For Summary
SUMMARY

This discussion focuses on calculating the variance of volume, denoted as ⟨Δ𝑉2⟩, and clarifies that volume is a scalar quantity rather than a vector. The user initially confused volume with vector components due to their background in simulations involving x, y, z directions. The consensus is that using Python's np.var(V) function directly on volume yields accurate results, while attempting to break volume into components leads to incorrect variance calculations. Understanding that volume does not have vectorial components is crucial for accurate variance computation.

PREREQUISITES
  • Understanding of variance and its mathematical formulation
  • Familiarity with scalar vs. vector quantities
  • Basic knowledge of Python programming and the NumPy library
  • Concept of component analysis in physics or simulations
NEXT STEPS
  • Study the mathematical definition of variance in scalar quantities
  • Learn about the differences between scalar and vector properties in physics
  • Explore the NumPy library, specifically the np.var() function and its applications
  • Research methods for analyzing physical properties in simulations, focusing on volume calculations
USEFUL FOR

Students, physicists, and data analysts working with volume calculations in simulations, as well as anyone seeking to clarify the distinction between scalar and vector properties in mathematical contexts.

bumblebee77
Messages
56
Reaction score
2
Homework Statement
I have to calculate Δ𝑉2 (where the "2" means "squared") to calculate something else. But I don't know if I should treat V as a scalar or vector.
Relevant Equations
⟨Δ𝑉2⟩=⟨𝑉2⟩−⟨𝑉⟩2
"2" is "squared."
⟨⟩ means the average of a column of values (i.e., collected over time).
This is not actually a homework problem. I'm old but having trouble with something that's probably at student level because it's so long since I learned this stuff. I would be grateful if someone would please take pity on me and help me out!

I am trying to calculate something that includes this term: ⟨Δ𝑉2⟩. It means "variance of volume." I'm getting lost though because I don't understand if I should treat volume as a scalar or vector here.

What I mean is, for any other parameter made up of three component directions (x, y, z), I would calculate variance by breaking the parameter into its x, y, z components and then using a process that involves dotting them together (I can write out the details if anyone is interested). However, I'm not sure if this is how I should treat V.

If I use Python's np.var(V) function on V (not its components), I get an answer that seems reasonable to the calculation that uses the result of ⟨Δ𝑉2⟩. If I use the component method, I don't. Does anyone know what is going on with this? Thank you.
 
Last edited:
Physics news on Phys.org
Volume is a scalar, not a vector. It doesn't have components. Are you thinking of a rectangular container with length, width and height? These are not "components" of the volume, in a vectorial sense. They don't behave the same way. If you have e.g. a velocity vector, then
v = √(vx2+vy2+vz2)
But the volume is given by V = xyz. You can't analyse it into components in the same way.
 
  • Informative
Likes bumblebee77
@mjc123, thank you very much!

I don't know why I'm having so much trouble with this. I guess I'm fixated on components because I'm doing simulations at fixed pressure where the volume of my system varies and I'm getting volume output in terms of x, y, z components.

I have done similar calculations for properties that are vectors--where I have to dot the components together as part of the variance calculation.

Yes, I was thinking of the coordinate directions as vector components.

Thanks a lot. I understand your words but still feel like I'm missing something fundamental. At least it sounds like I'm on the right track because my result is right when I treat volume as a scalar! Really appreciate your help. If there's a way to credit you in addition to liking your reply, please feel free to let me know!
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
3K
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
356
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K