MHB How do I find partial derivatives with fractional exponents in the Chain Rule?

  • Thread starter Thread starter harpazo
  • Start date Start date
  • Tags Tags
    Chain
harpazo
Messages
208
Reaction score
16
Given k = ge^(x/y), find ∂k/∂x and ∂k/∂y. The fractional exponent throws me into a loop. Can someone show me step by step how to tackle this problem?
 
Physics news on Phys.org
Harpazo said:
Given k = ge^(x/y), find ∂k/∂x and ∂k/∂y. The fractional exponent throws me into a loop. Can someone show me step by step how to tackle this problem?

If you can do $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\right) \end{align*}$ and $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}y}\,\left( \frac{1}{y} \right) \end{align*}$ there is no reason you can't do this problem.
 
Prove It said:
If you can do $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\right) \end{align*}$ and $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}y}\,\left( \frac{1}{y} \right) \end{align*}$ there is no reason you can't do this problem.

d/dx [x] = 1

d/dy [1/y]

We know that 1/y can be expressed as y^(-1).

So, d/dy [y^(-1)] = -y^(-2), which of course is -1/y^2.
 
Given k = g*e^(x/y), find ∂k/∂x.

∂k/∂x = g * e^(x/y) * (1/y) + e^(x/y)

∂k/∂x = [g*e^(x/y)]/(y) + e^(x/y)

Note: When taking the derivative of the exponent (x/y), I first expressed (x/y) as x*(1/y) and then took the partial derivative of x holding 1/y as constant. The product rule is also at work here. Is this correct?
 
Last edited:
Given k = g*e^(x/y), find ∂k/∂y.

∂k/∂y = g * e^(x/y) * (-x/y^2) + e^(x/y)

I applied the product rule.
 
Harpazo said:
Given k = g*e^(x/y), find ∂k/∂x.

∂k/∂x = g * e^(x/y) * (1/y) + e^(x/y)

∂k/∂x = [g*e^(x/y)]/(y) + e^(x/y)

Note: When taking the derivative of the exponent (x/y), I first expressed (x/y) as x*(1/y) and then took the partial derivative of x holding 1/y as constant. The product rule is also at work here. Is this correct?

If g is a constant then you don't need the product rule. If g is a function of x, then yes, the product rule will be needed. In either case, you have applied it incorrectly, as you should not have that extra "+ e^(x/y)"

- - - Updated - - -

Harpazo said:
Given k = g*e^(x/y), find ∂k/∂y.

∂k/∂y = g * e^(x/y) * (-x/y^2) + e^(x/y)

I applied the product rule.

Again, if g is a constant, you should not have used the product rule. If g is a function of y, then you would have needed the product rule, but you would have done so incorrectly, as again you should not have "+ e^(x/y)".
 
Given k = g*e^(x/y), find ∂k/∂x.

∂k/∂x = g * e^(x/y) * (1/y)

∂k/∂x = [g*e^(x/y)]/(y)

Am I ok now?

Note: Here, y is held as constant.

- - - Updated - - -

Given k = g*e^(x/y), find ∂k/∂y.

∂k/∂y = g * e^(x/y) * (-x/y^2)

Am I ok now?

Note: I could also simplify further by placing y^2 in the denominator. Here, x is held as constant.
 
Harpazo said:
Given k = g*e^(x/y), find ∂k/∂x.

∂k/∂x = g * e^(x/y) * (1/y)

∂k/∂x = [g*e^(x/y)]/(y)

Am I ok now?

Note: Here, y is held as constant.

- - - Updated - - -

Given k = g*e^(x/y), find ∂k/∂y.

∂k/∂y = g * e^(x/y) * (-x/y^2)

Am I ok now?

Note: I could also simplify further by placing y^2 in the denominator. Here, x is held as constant.

Yes they're both fine now :)
 
Prove It said:
Yes they're both fine now :)

I find partial derivatives easier than calculus 1 derivatives.
 
  • #10
Harpazo said:
I find partial derivatives easier than calculus 1 derivatives.
The honeymoon isn't over yet. The partial derivatives act in the same way as the ordinary derivatives. It's just that your course hasn't given you the harder problems while you are learning new methods.

-Dan
 
Back
Top