MHB How do I get the relation T_n(t)=Q_n(t)A_n(t)?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Relation
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Having the following problem:
$$(1): u_t=u_{xx}+f(x,t), 0<x<L, t>0$$
$$u(0,t)=u(L,t)=0, t>0$$
$$u(x,0)=0, 0<x<L$$
$$f(0,t)=f(L,t)=0, t>0$$

we do the following to find the general solution:

We write the function $f(x,t)$ as a Fourier series:
$$(2): f(x,t)=\sum_{n=1}^{\infty}{F_n(t) \sin{(\frac{n \pi x}{L})}}, F_n(t)=\frac{2}{L} \int_0^L f(x,t) \in{(\frac{n \pi x}{L})}dx$$

We write also $u(x,t)$ as a Fourier series:
$$(3): u(x,t)=\sum_{n=1}^{\infty}{T_n(t) \sin{(\frac{n \pi x}{L})}}, T_n(t)=\frac{2}{L} \int_0^L u(x,t) \sin{(\frac{n \pi x}{L})}dx$$

Replacing the relations $(2),(3)$ in $(1)$ we get:
$$(4):T_n'(t)+(\frac{n \pi}{L})^2 T_n(t)=F_n(t), n=1,2, \dots$$

The solution of the homogeneous $T_n'(t)+(\frac{n \pi}{L})^2 T_n(t)=0$ is:
$$T_n(t)=e^{-(\frac{n \pi}{L})^2t}=Q(t)$$
$$T_n(t)=Q_n(t)A_n(t)$$

So replacing this at the relation $(4)$ we get:
$$Q_n'A_n+Q_nA_n'+(\frac{n \pi}{L})^2Q_nA_n=F_n \Rightarrow Q_nA_n'=F_n \Rightarrow A_n'=\frac{F_n}{Q_n} \Rightarrow A_n'(t)=F_n(t) e^{(\frac{n \pi}{L})^2t} $$
So $$A_n(t)=\int_0^t F_n(s) e^{(\frac{n \pi}{L})^2s}ds$$

Therefore, $$(9): T_n(t)=\int_0^t F_n(s) e^{-(\frac{n \pi}{L})^2(t-s)}ds$$

So the solution is the relation $(3)$ and the coefficient $T_n(t)$ are given from the relation $(9)$.That is what I have in my notes.

When I solve the homogeneous $T_n'(t)+(\frac{n \pi}{L})^2 T_n(t)=0$, I get the following solution:
$$T_n(t)=D_n e^{-(\frac{n \pi}{L})^2t}$$
$D_n$ does not depend from $t$, does it?
How do I get the relation $T_n(t)=Q_n(t)A_n(t)$ ?? (Wondering)
 
Physics news on Phys.org
Hey! (Happy)

mathmari said:
How do I get the relation $T_n(t)=Q_n(t)A_n(t)$ ?? (Wondering)

I believe the method Variation of Parameters is applied here.

The actual solution of the homogeneous ODE is some constant $A_n$ times the eigenfunction.
To find a particular solution of the in-homogeneous ODE, we try $A_n(t)$ times the eigenfunction.
 
I like Serena said:
Hey! (Happy)
I believe the method Variation of Parameters is applied here.

The actual solution of the homogeneous ODE is some constant $A_n$ times the eigenfunction.
To find a particular solution of the in-homogeneous ODE, we try $A_n(t)$ times the eigenfunction.

Ahaa..! Ok! Thank you very much! (Happy)
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top