MHB How do I prove a trigonometric inequality?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that for all real numbers $x$, we have $$\left(2^{\sin x}+2^{\cos x}\right)^2\ge2^{2-\sqrt{2}}$$.
 
Mathematics news on Phys.org
anemone said:
Prove that for all real numbers $x$, we have $$\left(2^{\sin x}+2^{\cos x}\right)^2\ge2^{2-\sqrt{2}}$$.

AM-GM inequalty (as the LHS is always positive) with square root of LHS:

$$\dfrac{2^{\sin{x}}+2^{\cos{x}}}{2}\ge\sqrt{2^{\sin{x}}\cdot2^{\cos{x}}}=2^{\dfrac{\sqrt2}{2}\sin\left(x+\dfrac{\pi}{4}\right)}$$

$$2^{\sin{x}}+2^{\cos{x}}\ge2^{\dfrac{\sqrt2}{2}\sin\left(x+\dfrac{\pi}{4}\right)+1}$$

$$\min\left(\dfrac{\sqrt2}{2}\sin\left(x+\dfrac{\pi}{4}\right)+1\right)=1-\dfrac{\sqrt2}{2}$$

Square root of RHS:

$$2^{1-\dfrac{\sqrt2}{2}}$$

hence proved (with equality at $x=\dfrac{5\pi}{4}+2k\pi,k\in\mathbb{Z}$).
 
Good job, greg1313!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top